排序方式: 共有124条查询结果,搜索用时 15 毫秒
81.
82.
83.
Katy Trébern-Launay Yohann Foucher Magali Giral Christophe Legendre Henri Kreis Michèle Kessler Marc Ladrière Nassim Kamar Lionel Rostaing Valérie Garrigue Georges Mourad Emmanuel Morelon Jean-Paul Soulillou Jacques Dantal 《PloS one》2012,7(10)
Background
Old studies reported a worse outcome for second transplant recipient (STR) than for first transplant recipient (FTR) mainly due to non-comparable populations with numbers confounding factors. More recent analysis, based on improved methodology by using multivariate regressions, challenged this generally accepted idea: the poor prognosis for STR is still under debate.Methodology
To assess the long-term patient-and-graft survival of STR compared to FTR, we performed an observational study based on the French DIVAT prospective cohort between 1996 and 2010 (N = 3103 including 641 STR). All patients were treated with a CNI, an mTOR inhibitor or belatacept in addition to steroids and mycophenolate mofetil for maintenance therapy. Patient-and-graft survival and acute rejection episode (ARE) were analyzed using Cox models adjusted for all potential confounding factors such as pre-transplant anti-HLA immunization.Results
We showed that STR have a higher risk of graft failure than FTR (HR = 2.18, p = 0.0013) but that this excess risk was observed after few years of transplantation. There was no significant difference between STR and FTR in the occurrence of either overall ARE (HR = 1.01, p = 0.9675) or steroid-resistant ARE (HR = 1.27, p = 0.4087).Conclusions
The risk of graft failure following second transplantation remained consistently higher than that observed in first transplantation after adjusting for confounding factors. The rarely performed time-dependent statistical modeling may explain the heterogeneous conclusions of the literature concerning second transplantation outcomes. In clinical practice, physicians should not consider STR and FTR equally. 相似文献84.
Yannick Brunner Domitille Schvartz Feliciano Priego-Capote Yohann Cout Jean-Charles Sanchez 《Journal of Proteomics》2009,71(6):576-591
Chronic hyperglycaemia is one of the main characteristics of a diabetic state. This is also the first cause of diabetic complications. However, it is now generally accepted that glucotoxicity also participates in the worsening of type 2 diabetes, by affecting the secretion of β-cells. So far, different mechanisms have been proposed to explain the adverse effects of chronic hyperglycaemia. One of them suggests that the modulation of expression of several key proteins during a hyperglycaemia state, may explain the toxic effect of glucotoxicity. Therefore, proteomic analysis of biological samples represents an interesting method to study the effect of chronic hyperglycaemia on protein expression. The discovery of new proteins for which the expression could be modulated by chronic hyperglycaemia may probably help to better understand the mechanisms underlying glucotoxicity. In this review, we will first present an introduction of the different mechanisms known to be involved in the control of glucose homeostasis and in the development of glucotoxicity. In a second part, some proteomic data linked with the effect of glucotoxicity in pancreas, pancreatic islets and β-cells will be presented and discussed. 相似文献
85.
86.
Asma Mechakra Yohann Vincent Philippe Chevalier Gilles Millat Eckhard Ficker Marek Jastrzebski Hugo Poulin Valérie Pouliot Mohamed Chahine Georges Christé 《Gene》2014
Background
A variant of the ether-à-go-go related channel (hERG), p.Arg148Trp (R148W) was found at heterozygous state in two infants who died from sudden infant death syndrome (SIDS), one with documented prolonged QTc and Torsade de Pointes (TdP), and in an adult woman with QTc > 500 ms, atrioventricular block and TdP. This variant was previously reported in cases of severe ventricular arrhythmia but very rarely in control subjects. Its classification as mutation or polymorphism awaited electrophysiological characterization.Methods
The properties of this N-terminal, proximal domain, hERG variant were explored in Xenopus oocytes injected with the same amount of RNA encoding for either hERG/WT or hERG/R148W or their equimolar mixture. The human ventricular cell (TNNP) model was used to test the effects of changes in hERG current.Results
R148W alone produced a current similar to the WT (369 ± 76 nA (mean ± SEM), n = 13 versus 342 ± 55 nA in WT, n = 13), while the co-expression of 1/2 WT + 1/2 R148W lowered the current by 29% versus WT (243 ± 35 nA, n = 13, p < 0.05). The voltage dependencies of steady-state activation and inactivation were not changed in the variant alone or in co-expression with the WT. The time constants of fast recovery from inactivation and of fast and slow deactivation analyzed between − 120 and + 20 mV were not changed. The voltage-dependent distribution of the current amplitudes among fast-, slow- and non-deactivating fractions was unaltered. A 6.6% increase in APD90 from 323.5 ms to 345 ms was observed using the human cardiac ventricular myocyte model.Conclusions
Such a decrease in hERG current as evidenced here when co-expressing the hERG/R148W variant with the WT may have predisposed to the observed long QT syndrome and associated TdP. Therefore, the heterozygous carriers of hERG/R148W may be at risk of cardiac sudden death. 相似文献87.
Rational design of lipid for membrane protein crystallization 总被引:1,自引:0,他引:1
Misquitta Y Cherezov V Havas F Patterson S Mohan JM Wells AJ Hart DJ Caffrey M 《Journal of structural biology》2004,148(2):169-175
The lipidic cubic phase has been used to grow crystals of membrane proteins for high-resolution structure determination. However, the original, so-called, in meso method does not work reliably at low temperatures, where proteins are generally more stable, because the hosting lipid turns solid. The need existed therefore for a lipid that forms the cubic phase and that supports crystal growth at low temperatures. We created a database of phase diagrams and used it to design such a lipid. X-ray diffraction showed that the new lipid exhibits designed phase behavior. Further, it produces diffraction quality membrane protein crystals by the in meso method at 6 degrees C. This demonstrates that lipidic materials, like their protein counterparts are amenable to rational design. The same approach as used in this study should find application in extending the range of membrane proteins crystallizable by the in meso method and in tailoring transport of cubic phases for controlled delivery and uptake. 相似文献
88.
Clélia Le Gallic Yohann Phalente Line Manens Isabelle Dublineau Marc Benderitter Yann Gueguen Stephanie Lehoux Teni G. Ebrahimian 《PloS one》2015,10(6)
After Chernobyl and Fukushima Daï Chi, two major nuclear accidents, large amounts of radionuclides were released in the environment, mostly caesium 137 (137Cs). Populations living in contaminated territories are chronically exposed to radionuclides by ingestion of contaminated food. However, questions still remain regarding the effects of low dose ionizing radiation exposure on the development and progression of cardiovascular diseases. We therefore investigated the effects of a chronic internal exposure to 137Cs on atherosclerosis in predisposed ApoE-/- mice. Mice were exposed daily to 0, 4, 20 or 100 kBq/l 137Cs in drinking water, corresponding to range of concentrations found in contaminated territories, for 6 or 9 months. We evaluated plaque size and phenotype, inflammatory profile, and oxidative stress status in different experimental groups. Results did not show any differences in atherosclerosis progression between mice exposed to 137Cs and unexposed controls. However, 137Cs exposed mice developed more stable plaques with decreased macrophage content, associated with reduced aortic expression of pro-inflammatory factors (CRP, TNFα, MCP-1, IFNγ) and adhesion molecules (ICAM-1, VCAM-1 and E-selectin). Lesions of mice exposed to 137Cs were also characterized by enhanced collagen and smooth muscle cell content, concurrent with reduced matrix metalloproteinase MMP8 and MMP13 expression. These results suggest that low dose chronic exposure of 137Cs in ApoE-/- mice enhances atherosclerotic lesion stability by inhibiting pro-inflammatory cytokine and MMP production, resulting in collagen-rich plaques with greater smooth muscle cell and less macrophage content. 相似文献
89.
Jens Milbradt Alexandra Kraut Corina Hutterer Eric Sonntag Cathrin Schmeiser Myriam Ferro Sabrina Wagner Tihana Lenac Claudia Claus Sandra Pinkert Stuart T. Hamilton William D. Rawlinson Heinrich Sticht Yohann Couté Manfred Marschall 《Molecular & cellular proteomics : MCP》2014,13(8):2132-2146
Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.Viruses are tightly linked to the regulatory processes governing the metabolic state of their host cells. This regulatory linkage is reflected by viral activation or silencing of gene expression and productive replication in response to cellular changes in signaling, cell cycle, apoptosis, differentiation, and other parameters. Viruses also tend to exert a strong influence on regulatory cellular pathways and the developmental fate of virus-infected tissues (1, 2). These examples of virus-cell interregulation have been studied in detail, but in many cases the essential molecular mechanisms are still poorly understood. In the field of herpesviruses, profound efforts in molecular research have been undertaken to characterize those direct protein–protein interactions that regulate cross-talk between the virus and its host. Multi-protein complexes composed of both viral and cellular constituents were identified in several stages of herpesviral lytic replication. In particular, detailed studies on the replication of human cytomegalovirus (HCMV)1 in primary fibroblasts and other permissive cell types have provided very interesting insights into the nature of chimeric multi-protein complexes. These examples were described for viral entry, viral response to intrinsic immunity, intracellular transport of viral products, nucleocytoplasmic egress of viral capsids, and other processes (3–6). In classical approaches, protein–protein interaction was studied by means of approved methods including yeast two-hybrid, coimmunoprecipitation (CoIP), and pulldown analyses with purified proteins. More recently, very sensitive methods have been introduced into this field, such as proteomic analysis using tandem mass spectrometry (MS/MS), confocal imaging techniques, surface plasmon resonance analysis, and others.During HCMV replication, the translocation of genome-containing viral capsids from the nucleus to the cytoplasm (nuclear egress) is one of the most crucial steps. In this process, the nuclear envelope represents a barrier consisting of three distinct elements: nuclear membranes, nuclear pores, and the proteinaceous network of the nuclear lamina. The viral capsids traverse the nuclear envelope by budding through nuclear membranes. Importantly, HCMV capsids access the inner nuclear membrane by overcoming the proteinaceous network of the nuclear lamina. To regulate the serial steps in this procedure, a multimeric protein complex is formed, termed the nuclear egress complex (NEC) (4, 7). One of the main tasks of the NEC is the distortion of the nuclear lamina. Our recent studies identified the formation of lamina-depleted areas that result from the recruitment of sophisticated enzymatic activities to these specific sites at the lamina (8). Viral and cellular effectors, such as protein kinases, a proline cis/trans isomerase, and possibly further regulatory proteins, are involved in this process (4). It is commonly accepted that the core NEC is composed of two viral proteins, namely, pUL50 and pUL53 (9–13). Moreover, the association of pUL50–pUL53 with a number of viral and cellular proteins supports the concept of a multimeric NEC that may include the viral protein kinase pUL97, multi-ligand binding protein p32/gC1qR, lamin B receptor, and protein kinase C (PKC) (14).In this work, we first confirmed the major role played by pUL50 and pUL53 in NEC formation. The pUL50–pUL53 core NEC was then used as bait for the identification of other NEC components at different time points post-infection. Quantitative MS-based proteomics confirmed known members of the multimeric NEC and also identified the cellular inner nuclear membrane protein emerin as a novel NEC constituent. Importantly, colocalization of emerin with the HCMV-specific NEC and its interaction with pUL50 were demonstrated for the first time. Knockdown experiments provided functional validation of the importance of emerin and other NEC proteins for HCMV replication. Together, these data provide an extended mechanistic model for the composition and function of the HCMV-specific NEC. 相似文献
90.