全文获取类型
收费全文 | 15272篇 |
免费 | 1066篇 |
国内免费 | 20篇 |
专业分类
16358篇 |
出版年
2023年 | 109篇 |
2022年 | 179篇 |
2021年 | 384篇 |
2020年 | 193篇 |
2019年 | 296篇 |
2018年 | 308篇 |
2017年 | 285篇 |
2016年 | 433篇 |
2015年 | 761篇 |
2014年 | 780篇 |
2013年 | 986篇 |
2012年 | 1173篇 |
2011年 | 1148篇 |
2010年 | 704篇 |
2009年 | 616篇 |
2008年 | 820篇 |
2007年 | 877篇 |
2006年 | 736篇 |
2005年 | 689篇 |
2004年 | 681篇 |
2003年 | 548篇 |
2002年 | 561篇 |
2001年 | 212篇 |
2000年 | 205篇 |
1999年 | 172篇 |
1998年 | 163篇 |
1997年 | 115篇 |
1996年 | 115篇 |
1995年 | 111篇 |
1994年 | 92篇 |
1993年 | 99篇 |
1992年 | 129篇 |
1991年 | 105篇 |
1990年 | 97篇 |
1989年 | 97篇 |
1988年 | 92篇 |
1987年 | 76篇 |
1986年 | 81篇 |
1985年 | 103篇 |
1984年 | 77篇 |
1983年 | 68篇 |
1982年 | 76篇 |
1981年 | 50篇 |
1980年 | 52篇 |
1979年 | 59篇 |
1977年 | 62篇 |
1976年 | 44篇 |
1975年 | 45篇 |
1974年 | 52篇 |
1973年 | 58篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Katharina Simon Stephanie Hennen Nicole Merten Stefanie Bl?ttermann Michel Gillard Evi Kostenis Jesus Gomeza 《The Journal of biological chemistry》2016,291(2):705-718
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis. 相似文献
92.
Rehm P Borner J Meusemann K von Reumont BM Simon S Hadrys H Misof B Burmester T 《Molecular phylogenetics and evolution》2011,61(3):880-887
Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution. 相似文献
93.
Bj?rn Mückschel Oliver Simon Janosch Klebensberger Nadja Graf Bettina Rosche Josef Altenbuchner Jens Pfannstiel Armin Huber Bernhard Hauer 《Applied and environmental microbiology》2012,78(24):8531-8539
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol. 相似文献
94.
Haydyn D. T. Mertens Magnus Kjaergaard Simon Mysling Henrik G?rdsvoll Thomas J. D. J?rgensen Dmitri I. Svergun Michael Ploug 《The Journal of biological chemistry》2012,287(41):34304-34315
The urokinase-type plasminogen activator receptor (uPAR) provides a rendezvous between proteolytic degradation of the extracellular matrix and integrin-mediated adhesion to vitronectin. These processes are, however, tightly linked because the high affinity binding of urokinase regulates the binding of uPAR to matrix-embedded vitronectin. Although crystal structures exist to define the corresponding static bi- and trimolecular receptor complexes, it is evident that the dynamic property of uPAR plays a decisive role in its function. In the present study, we combine small angle x-ray scattering, hydrogen-deuterium exchange, and surface plasmon resonance to develop a structural model describing the allosteric regulation of uPAR. We show that the flexibility of its N-terminal domain provides the key for understanding this allosteric mechanism. Importantly, our model has direct implications for understanding uPAR-assisted cell adhesion and migration as well as for translational research, including targeted intervention therapy and non-invasive tumor imaging in vivo. 相似文献
95.
Jian Luo Gayathri Swaminath Sean P. Brown Jane Zhang Qi Guo Michael Chen Kathy Nguyen Thanhvien Tran Lynn Miao Paul J. Dransfield Marc Vimolratana Jonathan B. Houze Simon Wong Maria Toteva Bei Shan Frank Li Run Zhuang Daniel C.-H. Lin 《PloS one》2012,7(10)
Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1) is a G-protein-coupled receptor (GPCR), primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9–39)NH2. 相似文献
96.
Claire J. Sarell Theodoros K. Karamanos Simon J. White David H. J. Bunka Arnout P. Kalverda Gary S. Thompson Amy M. Barker Peter G. Stockley Sheena E. Radford 《The Journal of biological chemistry》2014,289(39):26859-26871
Although amyloid fibrils assembled in vitro commonly involve a single protein, fibrils formed in vivo can contain multiple protein sequences. The amyloidogenic protein human β2-microglobulin (hβ2m) can co-polymerize with its N-terminally truncated variant (ΔN6) in vitro to form hetero-polymeric fibrils that differ from their homo-polymeric counterparts. Discrimination between the different assembly precursors, for example by binding of a biomolecule to one species in a mixture of conformers, offers an opportunity to alter the course of co-assembly and the properties of the fibrils formed. Here, using hβ2m and its amyloidogenic counterpart, ΔΝ6, we describe selection of a 2′F-modified RNA aptamer able to distinguish between these very similar proteins. SELEX with a N30 RNA pool yielded an aptamer (B6) that binds hβ2m with an EC50 of ∼200 nm. NMR spectroscopy was used to assign the 1H-15N HSQC spectrum of the B6-hβ2m complex, revealing that the aptamer binds to the face of hβ2m containing the A, B, E, and D β-strands. In contrast, binding of B6 to ΔN6 is weak and less specific. Kinetic analysis of the effect of B6 on co-polymerization of hβ2m and ΔN6 revealed that the aptamer alters the kinetics of co-polymerization of the two proteins. The results reveal the potential of RNA aptamers as tools for elucidating the mechanisms of co-assembly in amyloid formation and as reagents able to discriminate between very similar protein conformers with different amyloid propensity. 相似文献
97.
In a rebreathing anesthesia circuit, the inhaled anesthetic sevoflurane degrades into at least two products, termed "compound A" and "compound B." The enantiomer separation of the chiral compound B (1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane ) by capillary gas chromatography (cGC) using heptakis (2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as chiral selector was studied. With this cyclodextrin derivative diluted in the polysiloxane PS 86, an unprecedented high separation factor alpha of 4.1 (at 30 degrees C) was found. Consequently, the enantiomers of compound B were isolated by preparative GC and their specific rotations were measured. In addition, their absolute configurations were determined by X-ray crystallography. To collect the X-ray data, single crystals of both enantiomers were grown in situ on the diffractometer. The levorotatory enantiomer B(-) has the R-configuration while the dextrorotatory enantiomer B(+) has the S-configuration. The elution order of the compound B enantiomers on heptakis (2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin is R before S. 相似文献
98.
Mark T. Gladwin Robyn J. Barst J. Simon R. Gibbs Mariana Hildesheim Vandana Sachdev Mehdi Nouraie Kathryn L. Hassell Jane A. Little Dean E. Schraufnagel Lakshmanan Krishnamurti Enrico Novelli Reda E. Girgis Claudia R. Morris Erika Berman Rosenzweig David B. Badesch Sophie Lanzkron Oswaldo L. Castro James G. Taylor VI Jonathan C. Goldsmith Gregory J. Kato Victor R. Gordeuk Roberto F. Machado 《PloS one》2014,9(7)
Background
The role of pulmonary hypertension as a cause of mortality in sickle cell disease (SCD) is controversial.Methods and Results
We evaluated the relationship between an elevated estimated pulmonary artery systolic pressure and mortality in patients with SCD. We followed patients from the walk-PHaSST screening cohort for a median of 29 months. A tricuspid regurgitation velocity (TRV)≥3.0 m/s cuttof, which has a 67–75% positive predictive value for mean pulmonary artery pressure ≥25 mm Hg was used. Among 572 subjects, 11.2% had TRV≥3.0 m/sec. Among 582 with a measured NT-proBNP, 24.1% had values ≥160 pg/mL. Of 22 deaths during follow-up, 50% had a TRV≥3.0 m/sec. At 24 months the cumulative survival was 83% with TRV≥3.0 m/sec and 98% with TRV<3.0 m/sec (p<0.0001). The hazard ratios for death were 11.1 (95% CI 4.1–30.1; p<0.0001) for TRV≥3.0 m/sec, 4.6 (1.8–11.3; p = 0.001) for NT-proBNP≥160 pg/mL, and 14.9 (5.5–39.9; p<0.0001) for both TRV≥3.0 m/sec and NT-proBNP≥160 pg/mL. Age >47 years, male gender, chronic transfusions, WHO class III–IV, increased hemolytic markers, ferritin and creatinine were also associated with increased risk of death.Conclusions
A TRV≥3.0 m/sec occurs in approximately 10% of individuals and has the highest risk for death of any measured variable.The study is registered in ClinicalTrials.gov with identifier
NCT00492531相似文献99.
Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy. We have previously shown that electrical stimulation improved satellite cell dysfunction. Here we test whether electrical stimulation can also enhance satellite cell proliferative potential as well as suppress apoptotic cell death in disuse-induced muscle atrophy. Eight-week-old male BALB/c mice were subjected to a 14-day hindlimb unloading procedure. During that period, one limb (HU-ES) received electrical stimulation (frequency: 20 Hz; duration: 3 h, twice daily) while the contralateral limb served as control (HU). Immunohistochemistry and western blotting techniques were used to characterize specific proteins in cell proliferation and apoptosis. The HU-ES soleus muscles showed significant improvement in muscle mass, cross-sectional area, and peak tetanic force relative to the HU limb (p<0.05). The satellite cell proliferative activity as detected within the BrdU+/Pax7+ population was significantly higher (p<0.05). The apoptotic myonuclei (detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and the apoptotic satellite cells (detected by cleaved Poly [ADP-ribose] polymerase co-labeled with Pax7) were reduced (p<0.05) in the HU-ES limb. Furthermore the apoptosis-inducing factor and cleaved caspase-3 were down-regulated while the anti-apoptotic Bcl-2 protein was up-regulated (p<0.05), in the HU-ES limb. These findings suggest that the electrical stimulation paradigm provides an effective stimulus to rescue the loss of myonuclei and satellite cells in disuse muscle atrophy, thus maintaining a viable satellite cell pool for subsequent muscle regeneration. Optimization of stimulation parameters may enhance the outcome of the intervention. 相似文献
100.
The majority of the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) was previously identified as forming a highly interactive structure with a ribosome-binding tRNA-shaped structure (TSS) acting as a scaffold and undergoing a widespread conformational shift upon binding to RNA-dependent RNA polymerase (RdRp). Tertiary interactions in the region were explored by identifying two highly detrimental mutations within and adjacent to a hairpin H4 upstream of the TSS that reduce translation in vivo and cause identical structural changes in the loop of the 3' terminal hairpin Pr. Second-site changes that compensate for defects in translation/accumulation and reverse the structural differences in the Pr loop were found in the Pr stem, as well as in a specific stem within the TSS and within the capsid protein (CP) coding region, suggesting that the second-site changes were correcting a conformational defect and not restoring specific base pairing. The RdRp-mediated conformational shift extended upstream through this CP open reading frame (ORF) region after bypassing much of an intervening, largely unstructured region, supporting a connection between 3' elements and coding region elements. These data suggest that the Pr loop, TSS, and H4 are central elements in the regulation of translation and replication in TCV and allow for development of an RNA interactome that maps the higher-order structure of a postulated RNA domain within the 3' region of a plus-strand RNA virus. 相似文献