首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   40篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   2篇
  2016年   9篇
  2015年   14篇
  2014年   23篇
  2013年   35篇
  2012年   17篇
  2011年   28篇
  2010年   29篇
  2009年   19篇
  2008年   29篇
  2007年   37篇
  2006年   36篇
  2005年   29篇
  2004年   38篇
  2003年   42篇
  2002年   32篇
  2001年   18篇
  2000年   20篇
  1999年   10篇
  1998年   14篇
  1997年   20篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   9篇
  1990年   13篇
  1989年   14篇
  1988年   9篇
  1987年   4篇
  1986年   11篇
  1985年   10篇
  1984年   5篇
  1983年   8篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   7篇
  1978年   2篇
  1977年   5篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1968年   2篇
排序方式: 共有700条查询结果,搜索用时 31 毫秒
51.
In the initial stage of the crystallization of egg-white lysozyme, monomeric lysozyme aggregated rapidly to form a nucleus in the presence of high salt concentrations. In the present studies, we examined the initial aggregation process of lysozyme (initial crystallization process of lysozyme) in D2O/H2O with sodium ions or potassium ions, and investigated the relationship between the surface hydrophobicity and the aggregation rate of lysozyme. The effect of sodium ions or potassium ions on the initial aggregation process of lysozyme in D2O was clearly different from H2O. The initial aggregation rate of lysozyme in H2O was slower than in D2O. In the case of H2O, the initial aggregation rate was about the same in both ions. But in the case of D2O, the initial aggregation rate was affected by the ion species and the value was lower in potassium ions than in sodium ions. These results suggest that the interaction between lysozyme molecules is stronger in D2O than in H2O. Furthermore, sodium ions have a stronger effect on the interaction than potassium ions in the case of D2O. There was a good correlation among the initial aggregation rate, surface hydrophobicity, and -potential of lysozyme. The hydrophobic interaction may be an important active force in the initial aggregation process of lysozyme.  相似文献   
52.
The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state) and Study 2 (fed state)]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals.

Trial Registration

Trial Registration: UMIN-CTR UMIN000004997  相似文献   
53.
The vacuolar-type H(+)-ATPases (V-ATPases) are a family of multi-subunit ATP-dependent proton pumps involved in diverse cellular processes, including acid/base homeostasis, receptor-mediated endocytosis, processing of proteins and signaling molecules, targeting of lysosomal enzymes, and activation of various degradation enzymes. These fundamental cellular activities are naturally related to higher order physiological functions in multicellular organisms. V-ATPases are involved in several physiological processes, including renal acidification, bone resorption, and neurotransmitter accumulation. Both forward- and reverse-genetic approaches have revealed that V-ATPase malfunction causes diseases and/or pathophysiological states, demonstrating its diverse roles in normal physiology. Here, we focus on the recent insights into the function of mammalian V-ATPase in highly differentiated cells and tissues.  相似文献   
54.
Translation elongation factor G (EF‐G) in bacteria plays two distinct roles in different phases of the translation system. EF‐G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post‐termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF‐G are distributed over two different EF‐G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF‐G is also found in bacteria. Two EF‐G paralogues are found in the spirochaete Borrelia burgdorferi, EF‐G1 and EF‐G2. We demonstrate that EF‐G1 is a translocase, while EF‐G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF‐G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF‐3) is present in the reaction. These results indicate that two B. burgdorferi EF‐G paralogues are close relatives to mitochondrial EF‐G paralogues rather than the conventional bacterial EF‐G, in both their phylogenetic and biochemical features.  相似文献   
55.
The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level. Here we show using time-lapse TIRF microscopy, under in vitro molecular crowding conditions, that ParM-bundle formation consists of two distinct phases. At the onset of polymerization bundle thickness and shape are determined in the form of nuclei of short helically disordered filaments arranged in a liquid-like lattice. These nuclei then undergo an elongation phase whereby they rapidly increase in length. At steady state, ParM bundles fuse into one single large aggregate. This behavior had been predicted by theory but has not been observed for any other cytomotive biopolymer, including F-actin. We employed electron micrographs of ParM rafts, which are 2-D analogs of 3-D bundles, to identify the main molecular interfilament contacts within these suprastructures. The interface between filaments is similar for both parallel and anti-parallel orientations and the distribution of filament polarity is random within a bundle. We suggest that the interfilament interactions are not due to the interactions of specific residues but rather to long-range, counter ion mediated, electrostatic attractive forces. A randomly oriented bundle ensures that the assembly is rigid and that DNA may be captured with equal efficiency at both ends of the bundle via the ParR binding protein.  相似文献   
56.
Although gating of mechanoelectrical transducer (MET) channels has been successfully described by assuming that one channel is associated with a tip link in the hair bundle, recent reports indicate that a single tip link is associated with more than one channel. To address the consistency of the model with the observations, gating of MET channels is described here by assuming that each tip link is associated with two identical MET channels, which are connected either in series or in parallel. We found that series connection does not lead to a single minimum of stiffness with respect to hair bundle displacement unless the minimum is above a certain positive value. Thus, negative stiffness must appear in pairs in the displacement axis. In contrast, parallel connection of the two channels predicts gating compliance similar to that predicted by the one-channel-per-tip-link model of channel gating, within the physiological range of parameters. Parallel connection of MET channels is, therefore, a reasonable assumption to explain most experimental observations. However, the compatibility with series connection cannot be ruled out for experimental data on turtle hair cells.  相似文献   
57.
Improving health of the rapidly growing aging population is a critical medical, social, and economic goal. Identification of genes that modulate healthspan, the period of mid‐life vigor that precedes significant functional decline, will be an essential part of the effort to design anti‐aging therapies. Because locomotory decline in humans is a major contributor to frailty and loss of independence and because slowing of movement is a conserved feature of aging across phyla, we screened for genetic interventions that extend locomotory healthspan of Caenorhabditis elegans. From a group of 54 genes previously noted to encode secreted proteins similar in sequence to extracellular domains of insulin receptor, we identified two genes for which RNAi knockdown delayed age‐associated locomotory decline, conferring a high performance in advanced age phenotype (Hpa). Unexpectedly, we found that hpa‐1 and hpa‐2 act through the EGF pathway, rather than the insulin signaling pathway, to control systemic healthspan benefits without detectable developmental consequences. Further analysis revealed a potent role of EGF signaling, acting via downstream phospholipase C‐γplc‐3 and inositol‐3‐phosphate receptor itr‐1, to promote healthy aging associated with low lipofuscin levels, enhanced physical performance, and extended lifespan. This study identifies HPA‐1 and HPA‐2 as novel negative regulators of EGF signaling and constitutes the first report of EGF signaling as a major pathway for healthy aging. Our data raise the possibility that EGF family members should be investigated for similar activities in higher organisms.  相似文献   
58.
59.
Chemotherapy for tumor and pathogenic virus often faces an emergence of resistant mutants, which may lead to medication failure. Here we study the risk of resistance to evolve in a virus population which grows exponentially. We assume that infected cells experience a "proliferation event" of virus at a random time and that the number of newly infected cells from an infected cell follows a Poisson distribution. Virus starts from a single infected cell and the virus infection is detected when the number of infected cells reaches a detection size. Initially virus is sensitive to a drug but later acquires resistance by mutations. We ask the probability that one or more cells infected with drug-resistant virus exist at the time of detection. We derive a formula for the probability of resistance and confirm its accuracy by direct computer simulations. The probability of resistance increases with detection size and mutation rate but decreases with the population growth rate of sensitive virus. The risk of resistance is smaller when more cells are newly infected by viral particles from a single infected cell if the viral growth rate is the same.  相似文献   
60.
A promising strategy for identifying disease susceptibility genes for both single- and multiple-gene diseases is to search patients' autosomes for shared chromosomal segments derived from a common ancestor. Such segments are characterized by the distinct identity of their haplotype. The methods and algorithms currently available have only a limited capability for determining a high-resolution haplotype genomewide. We herein introduce the homozygosity haplotype (HH), a haplotype described by the homozygous SNPs that are easily obtained from high-density SNP genotyping data. The HH represents haplotypes of both copies of homologous autosomes, allowing for direct comparisons of the autosomes among multiple patients and enabling the identification of the shared segments. The HH successfully detected the shared segments from members of a large family with Marfan syndrome, which is an autosomal dominant, single-gene disease. It also detected the shared segments from patients with model multigene diseases originating with common ancestors who lived 10-25 generations ago. The HH is therefore considered to be useful for the identification of disease susceptibility genes in both single- and multiple-gene diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号