首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7213篇
  免费   414篇
  国内免费   3篇
  2023年   17篇
  2022年   56篇
  2021年   105篇
  2020年   54篇
  2019年   86篇
  2018年   96篇
  2017年   107篇
  2016年   139篇
  2015年   252篇
  2014年   291篇
  2013年   486篇
  2012年   465篇
  2011年   463篇
  2010年   341篇
  2009年   300篇
  2008年   502篇
  2007年   483篇
  2006年   501篇
  2005年   474篇
  2004年   471篇
  2003年   458篇
  2002年   451篇
  2001年   54篇
  2000年   45篇
  1999年   91篇
  1998年   100篇
  1997年   77篇
  1996年   72篇
  1995年   59篇
  1994年   71篇
  1993年   62篇
  1992年   43篇
  1991年   37篇
  1990年   19篇
  1989年   21篇
  1988年   33篇
  1987年   20篇
  1986年   21篇
  1985年   17篇
  1984年   28篇
  1983年   12篇
  1982年   28篇
  1981年   25篇
  1980年   14篇
  1979年   20篇
  1978年   7篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1970年   5篇
排序方式: 共有7630条查询结果,搜索用时 15 毫秒
271.
The Cdc24 protein is essential for the completion of chromosomal DNA replication in fission yeast. Although its precise role in this process is unclear, Cdc24 forms a complex with Dna2, a conserved endonuclease–helicase implicated in the removal of the RNA–DNA primer during Okazaki fragment processing. To gain further insights into Cdc24–Dna2 function, we screened for chromosomal suppressors of the temperature-sensitive cdc24-M38 allele and mapped the suppressing mutations into six complementation groups. Two of these mutations defined genes encoding the Pol3 and Cdc27 subunits of DNA polymerase δ. Sequence analysis revealed that all the suppressing mutations in Cdc27 resulted in truncation of the protein and loss of sequences that included the conserved C-terminal PCNA binding motif, previously shown to play an important role in maximizing enzyme processivity in vitro. Deletion of this motif is shown to be sufficient for suppression of both cdc24-M38 and dna2-C2, a temperature-sensitive allele of dna2+, suggesting that disruption of the interaction between Cdc27 and PCNA renders the activity of the Cdc24–Dna2 complex dispensable.  相似文献   
272.
273.
Thermally decomposed products of (+/-)-linalyl beta-D-glucoside were analyzed by GC and GC/MS. 2,6-dimethyl-2,6-octadienes produced by mild pyrolysis of linalyl beta-D-glucopyranoside under a vacuum were detected and characterized by MS and NMR spectroscopy. This suggests that 2,6-dimethyl-2,6-octadienes are produced during thermal decomposition of the glucoside via proton transfer from the anomeric position to C-6 in the aglycon moiety. A stable isotope labeling experiment directly indicated the new reaction mechanism.  相似文献   
274.
A new monoterpene glucoside (1) was isolated from a methanol extract of the dried aerial parts of thyme (Thymus vulgaris L.), together with known 2- and 5-beta-D-glucopyranosylthymoquinols (2 and 3, respectively), and (-)-angelicoidenol-beta-D-glucopyranoside (4). The structure of 1 was elucidated to be (R)-p-cymen-9-yl beta-D-glucopyranoside by spectral evidence and enantioselective synthesis from (R)- and (S)-p-cymen-9-ol derived from p-cymen-8-ol.  相似文献   
275.
A simple new assay was designed for lipoxygenase inhibitors. This assay was used to find the novel lipoxygenase inhibitor, tetrapetalone A (1). Tetrapetalone A (1), C26H33NO7, was isolated from Streptomyces sp. USF-4727 strain. Its planar structure was determined by spectroscopic evidence and by methylating with diazomethane to show the presence of a novel tetracyclic skeleton and a beta-D-rhodinosyl moiety. The stereochemistry of 1 was investigated by the coupling constant in the 1H-NMR spectrum, NOE correlations, modified Mosher's method and derivation. We have reported the structural elucidation of 1 in our previous paper. However, further investigation gave another structure for 1, which is described in this paper. Tetrapetalone A showed similar inhibitory activity against soybean lipoxygenase to the two well-known lipoxygenase inhibitors, kojic acid and NDGA, while methylated tetrapetalone A (2) showed little inhibitory activity, even at a concentration of 1 mM.  相似文献   
276.
277.
The metabolic efficiency of seven derivatives of 1,4-benzoquinone (BQ) by yeast cells and the oxidative characteristics of the corresponding hydroquinones (HQs) were studied by electrochemical, spectrophotometric and chemiluminescent methods. The spectrophotometric method was based on the reduction of a tetrazolium salt to formazan dye during the autoxidation of HQs generated by yeast cells under alkaline conditions. The amounts of HQs detected directly by the electrochemical method did not agree with those calculated from the formazan dye obtained by the spectrophotometric method. A tetrazolium salt was reduced to a formazan dye by both the superoxide anion radical (O2-*) generated during the autoxidation of 2,3,5,6-tetramethyl-1,4-HQ and by HQ itself. Little formazan dye was formed, and hydrogen peroxide (H2O2) was then finally produced during the autoxidation of 1,4-HQ or 2-methyl-1,4-HQ. Formazan dye and H2O2 were generated at a certain ratio during the autoxidation of derivatives of dimethyl-1,4-HQ or 2,3,5-trimethyl-1,4-HQ. The analytical method based on chemiluminescence with lucigenin and 2,3,5,6-tetramethyl-1,4-BQ was applied to highly sensitive measurement of the yeast cell density. A linear relationship between the chemiluminescence intensity and viable cell density was obtained in the range of 1.2 x 10(3) - 4.8 x 10(4) cells/ml. The detection limit was 4.8 x 10(2) cells/ml.  相似文献   
278.
To evaluate the origin of citrus essential oils, the isotope ratio of fragment peaks on HRGC-MS of the volatile compounds from various citrus oils was measured. The MS fragment ratio was found by the ratio of fragment peak intensity, m+1/m (m/z). This ratio reflects the isotope effect of volatile compounds, that is, it provides information about locality, quality, and species for essential oils. Multivariate analysis based on the MS fragment ratio of monoterpene hydrocarbons clearly distinguished three citrus species, yuzu, lemon, and lime. The carbonyl fractions were also extracted from citrus essential oils by the sodium hydrogensulfite method. The isotope ratio of MS fragments of octanal, nonanal, and decanal was also examined. The results suggest that there was no significant difference in the individual fragment isotope ratios of the three aldehydes.  相似文献   
279.
We investigated chromosomal damage caused by a typical flavonoid, quercetin, and its two conjugates, quercetin-3-O-sulfate and isorhamnetin, and their protective effects against chromosomal damage induced by H2O2. The chromosomal damage was detected by the cytokinesis-block micronucleus (CBMN) assay using a lymphoblastoid cell line, WIL2-NS. We found that quercetin itself induced chromosomal damage at 10 microM, but quercetin-3-O-sulfate and isorhamnetin did not induce damage up to 30 microM. In the medium used for the CBMN assay, quercetin (at 100 microM) generated a high concentration of H2O2, but the two conjugates did not at the same concentration. On the other hand, pretreatment with quercetin (at 1 microM), quercetin-3-O-sulfate (at 10 microM), and isorhamnetin (at 5 microM) prevented H2O2-induced chromosomal damage to WIL2-NS cells. These findings suggest that the induction and prevention of H2O2-induced chromosomal damage are different between quercetin and its metabolites.  相似文献   
280.
In lower land plants, genes controlling the transition from vegetative growth to sexual reproduction have not yet been identified. In the dioecious liverwort Marchantia polymorpha, the transition to sexual reproduction accompanied by the formation of sexual organs on the gametophytic thallus is initiated under long-day conditions. By particle bombardment-mediated mutagenesis, we generated a mutant of M. polymorpha that constitutively forms sexual organs. This mutant is fully fertile, showing that the mutation does not affect formation of male or female sexual organs per se. Genetic analysis reveals that this phenotype is caused by mutation of a single autosomal locus, suggesting that this mutation defines or controls a gene regulating the transition to sexual reproduction in M. polymorpha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号