首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   26篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   16篇
  2020年   13篇
  2019年   6篇
  2018年   17篇
  2017年   14篇
  2016年   19篇
  2015年   29篇
  2014年   34篇
  2013年   68篇
  2012年   55篇
  2011年   43篇
  2010年   15篇
  2009年   26篇
  2008年   39篇
  2007年   26篇
  2006年   19篇
  2005年   24篇
  2004年   20篇
  2003年   17篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有575条查询结果,搜索用时 125 毫秒
51.
In the present study, isolation of anaerobic bacteria from 24 different eco-niches was carried out. A total number of 300 bacterial isolates, including 230 obligate and 70 facultative anaerobes were obtained using anaerobic techniques. All the isolates were initially screened for succinic acid production by Fluorescein test and TLC method. During screening, 10 isolates found to produce succinic acid were further examined by HPLC and then finally confirmed for succinic acid by LC-MS analysis. Amongst 10 isolates, isolate SAP, a facultative anaerobe isolated from buffalo rumen fluid, showed maximum yield of 2.1 g/l of succinic acid from 10 g of glucose in 24 hr under anaerobic condition. This isolate was identified as Klebsiella pneumoniae strain SAP by 16S rDNA sequence and signature sequence analysis. Mouse lethality test for the strain SAP showed LD50 value of 3.3 x 10(8) CFU/ml, which shows non-virulent nature of the strain. This strain may become a candidate strain for succinic acid production because of its osmotolerant nature and higher succinate:acetate ratio.  相似文献   
52.
Doxorubicin (DOX) transport activity of Ral-interacting protein (RLIP76) in non-small cell lung cancer (NSCLC) is approximately twice that of in small cell lung cancer (SCLC). Since protein-kinase-C (PKC)alpha mediated phosphorylation of RLIP76 causes doubling of the specific activity of RLIP76, and NSCLC cells are known to have greater PKCalpha activity, we examined the contribution of PKC mediated phosphorylation of RLIP76 towards intrinsic DOX-resistance in human NSCLC. Expression of a deletion mutant RLIP76(delPKCalpha-sites) followed by depletion of the wild-type RLIP76 using a siRNA targeted at one of the deleted regions resulted in generation of cells expressing only the mutant protein, which could not be phosphorylated by PKCalpha. DOX-transport activity of the mutant RLIP76 purified from NSCLC and SCLC was similar and comparable to that of RLIP76 purified from the wild-type SCLC. However, this activity was significantly lower than that of RLIP76 purified from the wild-type NSCLC. After siRNA mediated depletion of PKCalpha, DOX-transport activities of RLIP76 purified from SCLC and NSCLC were indistinguishable. Depletion of PKCalpha inhibited the growth of NSCLC more than SCLC cells (70+/-3% vs. 43+/-5%, respectively). PKCalpha-depletion lowered the IC(50) of NSCLC cell lines for DOX to the same level as that observed for SCLC. RLIP76(-/-) mouse embryonic fibroblasts (MEFs) were significantly more sensitive to DOX as compared with RLIP76(+/+) MEFs (IC(50) 25 vs. 125nM, respectively). However, PKCalpha-depletion did not affect DOX-cytotoxicity towards RLIP76(-/-) MEFs, as opposed to RLIP76(+/+) MEFs which were sensitized by 2.2-fold. These results demonstrate that RLIP76 is a primary determinant of DOX-resistance, and that PKCalpha mediated accumulation defect and DOX-resistance in NSCLC is primarily due to differential phosphorylation of RLIP76 in SCLC and NSCLC.  相似文献   
53.
Bcl-2 (B cell lymphoma-2) is an anti-apoptotic member of Bcl-2 family and its overexpression causes development of several types of cancer. The BH3 domain of pro-apoptotic and BH3-only proteins is capable of binding to Bcl-2 protein to induce apoptosis. This binding is the basis for the development of novel anticancer drug which would likely antagonize Bcl-2 overexpression. In this study we have identified BH3 domain of Bax (Bax BH3) as potentially the best Bcl-2 antagonist by performing docking of BH3 peptides (peptides representing BH3 domain of pro-apoptotic and BH3-only proteins) into the Bcl-2 hydrophobic groove formed by BH3, BH1 and BH2 domains (also referred as BH3 cleft). To predict the best small antagonist for Bcl-2, three groups of small peptides (pentapeptide, tetrapeptide and tripeptide) were designed and screened against Bcl-2 which revealed the structural importance of a set of residues playing a vital role in interaction with Bcl-2. The docking and scoring function identified KRIG and KRI as specific peptides among the screened small peptides responsible for Bcl-2 neutralization and would induce apoptosis. The applied pharmacokinetic and pharmacological filters to all small peptides signify that only IGD has drug-like properties and displayed good oral bioavailability. However, the obtained binding affinity of IGD to Bcl-2 was diminutive. Hence deprotonation, amidation, acetylation, benzoylation, benzylation, and addition of phenyl, deoxyglucose and glucose fragments were performed to increase the binding affinity and to prevent its rapid degradation. Benzoylated IGD tripeptide (IGD(bzo)) was observed to have increased binding affinity than IGD with acceptable pharmacokinetic filters. In addition, stability of Bcl-2/IGD(bzo) complex was validated by Molecular Dynamics (MD) simulations revealing improved binding energy, salt bridges and strong interaction energies. This study suggests a new molecule that inhibits Bcl-2 associated cancer/tumor regression.  相似文献   
54.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   
55.

Background

A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer.

Results

A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line.

Conclusion

While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.  相似文献   
56.
Valeric acid and 2-methylbutyric acid serve as chemical intermediates for a variety of applications such as plasticizers, lubricants and pharmaceuticals. The commercial process for their production uses toxic intermediates like synthesis gas and relies on non-renewable petroleum-based feedstock. In this work, synthetic metabolic pathways were constructed in Escherichia coli for the renewable production of these chemicals directly from glucose. The native leucine and isoleucine biosynthetic pathways in E. coli were expanded for the synthesis of valeric acid and 2-methylbutyric acid (2MB) respectively by the introduction of aldehyde dehydrogenases and 2-ketoacid decarboxylases. Various aldehyde dehydrogenases and 2-ketoacid decarboxylases were investigated for their activities in the constructed pathways. Highest titers of 2.59 g/L for 2-mthylbutyric acid and 2.58 g/L for valeric acid were achieved in shake flask experiments through optimal combinations of these enzymes. This work demonstrates the feasibility of renewable production of these high volume aliphatic carboxylic acids.  相似文献   
57.
58.

Background  

Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences.  相似文献   
59.
B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2’s BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.  相似文献   
60.
Ectomycorrhizal (ECM) fungal species, a "Symbiotic" relationship between tress and fungi in forest has a great ecological and economic importance. Here is an attempt to describe database named "EctomycorrhizalDB", addressing ECM diversity of Central Himalaya (Kumaun region), with special emphasis on their characterization, physical properties and morphological features along with specifications. This database would help the scientific community to draw a better understanding of the environmental factors that affects species diversity. AVAILABILITY: The database is available for free at http://www.kubic.nic.in/ectomychorhiza.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号