首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   79篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   14篇
  2012年   11篇
  2011年   15篇
  2010年   14篇
  2009年   9篇
  2008年   9篇
  2007年   21篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   16篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   4篇
  1992年   9篇
  1991年   9篇
  1990年   19篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   16篇
  1982年   6篇
  1979年   7篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1969年   7篇
  1968年   3篇
  1964年   3篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
21.
A pure culture of Pseudomonas cepacia AC1100 was able to degrade and grow in presence of 2,4,5-trichlorophenoxyacetic acid in soil. At optimum temperature (30 degrees C) and moisture content (15 to 50% [wt/vol]) strain AC1100 could degrade as much as 95% of 2,4,5-trichlorophenoxyacetic acid at high concentration (1 mg/g of soil) within 1 week.  相似文献   
22.
A pure culture of Pseudomonas cepacia, designated AC1100, that can utilize 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as its sole source of carbon and energy was isolated. An actively growing culture of AC1100 was able to degrade more than 97% of 2,4,5-T, present at 1 mg/ml, within 6 days as determined by chloride release, gas chromatographic, and spectrophotometric analyses. The ability of AC1100 to oxidize a variety of chlorophenols and related compounds is also reported.  相似文献   
23.
Cultural conditions optimum for beta-galactosidase production by Saccharomyces anamensis are pH 4.5, temperature 26 +/- 2 degrees C, and 30 h of incubation period. Addition of lactose at 24 h fermentation greatly increase the level of enzyme. Optimum pHl, temperature, pH stability, and thermostability of yeast beta-galactosidase are negligibly affected by immobilization. The K(m) values of enzyme in the native and immobilized cells are 102mM and 148mM, respectively. Glucose noncompetitively inhibits the enzyme activity. Addition of substances such as dithioerythritol, glutathione, and bovine serum albumin to the native cell during assay procedure and immobilized cell prior to immobilization have stimulatory effects on enzyme activity. Metal ions like Ca(2+), Mg(2+) enhance the beta-galactosidase activity for both intact and bound cells. Immobilized cells retain 68.6% of the beta-galactosidase activity of intact cells and there is no significant loss of activity on storage at 4 degrees C for 28 days.  相似文献   
24.
The functional role of epidermal growth factor (EGF) in epithelium-derived human colonic carcinoma cells was investigated by transfection with plasmid pUCDS3, which contained synthetic human EGF encoding sequences, into two human colonic carcinoma cell types with dissimilar phenotypic properties: the moderately differentiated and growth factor-responsive Moser and the highly metastatic KM12SM cells. The Moser cells exhibited a proliferative response to treatment with exogenous EGF, while the KM12SM cells did not. The constitutive expression of the human EGF gene in these colonic carcinoma cell types resulted in elevated expression of EGF mRNA, with concurrent production and secretion of a large amount of EGF, and downmodulation of transforming growth factor-alpha (TGF-alpha) secretion. Growth stimulation and down-modulation of both high and low affinity EGF receptors were observed in the EGF-transfected Moser clones. Results of experiments using anti-EGF and anti-EGF-receptor antibody to block the proliferation of EGF-transfected Moser clones suggested that autocrine stimulatory mechanisms involving both EGF and TGF-alpha were operative in these cells. By comparison, a growth-inhibitory effect, with no apparent EGF receptor modulation, was observed in the EGF-transfected KM12SM clones. Both the parental and EGF-transfected KM12SM clones possessed fewer EGF receptors than the Moser cells, and anti-EGF or anti-EGF-receptor antibody did not affect the cells' growth properties. These results suggested that the mechanisms of growth inhibition in the EGF-transfected KM12SM clones were non-autocrine or intracellular in nature. Thus, constitutive expression of the human EGF gene in two phenotypically different, epithelium-derived human colonic carcinoma cells resulted in divergent altered growth characteristics.  相似文献   
25.
In Pseudomonas putida, the catBC operon encodes enzymes involved in benzoate degradation. Previous studies have determined that these enzymes are induced when P. putida is grown in the presence of benzoate. Induction of the enzymes of the catBC operon requires an intermediate of benzoate degradation, cis,cis-muconate, and a regulatory protein, CatR. It has been determined that CatR binds to a 27-bp region of the catBC promoter in the presence or absence of inducer. We have called this the repression binding site. In this study, we used a gel shift assay to demonstrate that the inducer, cis,cis-muconate, increases the affinity of CatR for the catBC promoter region by 20-fold. Furthermore, in the absence of cis,cis-muconate, CatR forms two complexes in the gel shift assay. The inducer cis,cis-muconate confers specificity primarily for the formation of complex 2. DNase I footprinting showed that an additional 27 bp of the catBC promoter region is protected by CatR in the presence of cis,cis-muconate. We have named this second binding site the activation binding site. Methylation interference footprinting determined that in the presence or absence of inducer, five G nucleotides of the catBC promoter region were necessary for CatR interaction with the repression binding site, while a single G residue was important for CatR interaction with the activation binding site in the presence of cis,cis-muconate. Using polymerase chain reaction-generated constructs, we found that the binding of CatR to the repression binding site is independent of the activation binding site. However, binding of CatR to the activation binding site required an intact repression binding site.  相似文献   
26.
27.
Root segments and root-soil cores (6.5-cm diameter) from fields and nurseries of winter wheat and sorghum were tested for N2 fixation by using the acetylene reduction assay. Wheat samples (approximately 1,200) from 109 sites generally had low or no activity (0 to 3.1 nmol of C2H4 produced per h per g [dry weight] of root segments), even after 24 h of incubation. However, a commercial field of Scout 66, located in western Nebraska, exhibited appreciable activity (290 nmol of C2H4 produced per h per g [dry weight] of root segments). Of 400 sorghum lines and crosses, grain sorghums (i.e., CK-60A, Wheatland A, B517, and NP-16) generally exhibited higher nitrogenase activity than forage sorghums or winter wheats. CK-60A, a male sterile grain sorghum, was sampled at four locations and had the most consistent activity of 24 to 1,100 nmol of C2H4 produced per h per core. The maximum rate extrapolated to 2.5 g of N per hectare per day. Numerous N2-fixing bacterial isolates were obtained from wheat and sorghum roots that exhibited high nitrogenase activity. Most isolates were members of the Enterobacteriacae, i.e., Klebsiella pneumoniae, Enterobacter cloacae, and Erwinia herbicola.  相似文献   
28.
XYL, a nonconjugative xylene-degradative plasmid in Pseudomonas Pxy.   总被引:12,自引:8,他引:4       下载免费PDF全文
Pseudomanas Pxy metabolizes p- or m-xylene through intermediate formation of the corresponding methylbenzyl alcohol and toluic acid via the meta pathway. The strain Pseudomonas Pxy spontaneously loses its ability to grow with xylene or toluate, and the rate of loss of this ability is greatly enhanced by treatment of the cells with mitomycin C. The assay of enzymes involved in xylene degradation in xylene-negative Pxy cells indicates the loss of the entire enzyme complement of the pathway. The genes specifying all the xylene-degradative enzymes, including those of the meta pathway, appear to be borne on a nonconjugative plasmid and can be transferred to xylene-negative Pxy or P. putida strain PpG1 cells only in the presence of a transfer plasmid termed factor K. When transferred to strain PpG1, the xylene-degradative plasmid, termed XYL, coexists stably with factor K, but transduction of XYL is not accompanied by a cotransfer of factor K. XYL appears to be compatible wit- all the other known degradative plasmids in P. putida. The xylene pathway is inducible in wild-type Pxy as well as in Pxy and PpG1 exconjugants, suggesting the cotransfer of regulatory genes along with the plasmid. The enzymes converting xylene to toluate are induced by xylene, methylbenzyl alcohol, or the aldehyde derivatives but not significantly by toluate, whereas catechol dioxygenase and other enzymes are induced by toluates and presumable by xylene as well.  相似文献   
29.
Smokeless tobacco usage is a growing public health problem worldwide. The molecular mechanism(s) underlying smokeless tobacco associated tissue damage remain largely unidentified. In the present study we have tried to explore the effects of aqueous extract of smokeless tobacco (STE) on tubulin-microtubule, the major cytoskeleton protein that maintains cells morphology and participates in cell division. Exposure to STE resulted in dose-dependent cytotoxicity in a variety of mammalian transformed cell lines such as human lung epithelial cells A549, human liver epithelial cells HepG2, and mouse squamous epithelial cells HCC7, as well as non-tumorogenic human peripheral blood mononuclear cells PBMC. Cellular morphology of STE-treated cells was altered and the associated disruption of microtubule network indicates that STE targets tubulin-microtubule system in both cell lines. Furthermore it was also observed that STE-treatment resulted in the selective degradation of cellular tubulin, whereas actin remains unaltered. In vitro, polymerization of purified tubulin was inhibited by STE with the IC50 value∼150 µg/ml and this is associated with the loss of reactive cysteine residues of tubulin. Application of thiol-based antioxidant N-acetyl cysteine (NAC) significantly abrogates STE-mediated microtubule damage and associated cytotoxicity in both A549 and HepG2 cells. These results suggest that microtubule damage is one of the key mechanisms of STE-induced cytotoxity in mammalian cells.  相似文献   
30.
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号