首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   81篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   12篇
  2015年   17篇
  2014年   22篇
  2013年   27篇
  2012年   24篇
  2011年   33篇
  2010年   22篇
  2009年   24篇
  2008年   25篇
  2007年   27篇
  2006年   23篇
  2005年   25篇
  2004年   19篇
  2003年   22篇
  2002年   19篇
  2001年   28篇
  2000年   17篇
  1999年   17篇
  1998年   14篇
  1997年   14篇
  1996年   13篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   12篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   10篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1966年   2篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
111.
112.
Three satellite DNA families were identified in three species of burying beetles, Nicrophorus orbicollis, N. marginatus, and N. americanus. Southern hybridization and nucleotide sequence analysis of individual randomly cloned repeats shows that these satellite DNA families are highly abundant in the genome, are composed of unique repeats, and are species-specific. The repeats do not have identifiable core elements or substructures that are similar in all three families, and most interspecific sequence similarity is confined to homopolymeric runs of A and T. Satellite DNA from N. marginatus and N. americanus show single-base-pair indels among repeats, but single-nucleotide substitutions characterize most of the repeat variability. Although the repeat units are of similar lengths (342, 350, and 354 bp) and A + T composition (65%, 71%, and 71%, respectively), the average nucleotide divergence among sequenced repeats is very low (0.18%, 1.22%, and 0.71%, respectively). Transition/transversion ratios from the consensus sequence are 0.20, 0.69, and 0.70, respectively.   相似文献   
113.
The regulation of caspase‐3 enzyme activity is a vital process in cell fate decisions leading to cell differentiation and tissue development or to apoptosis. The zebrafish, Danio rerio, has become an increasingly popular animal model to study several human diseases because of their transparent embryos, short reproductive cycles, and ease of drug administration. While apoptosis is an evolutionarily conserved process in metazoans, little is known about caspases from zebrafish, particularly regarding substrate specificity and allosteric regulation compared to the human caspases. We cloned zebrafish caspase‐3a (casp3a) and examined substrate specificity of the recombinant protein, Casp3a, compared to human caspase‐3 (CASP3) by utilizing M13 bacteriophage substrate libraries that incorporated either random amino acids at P5‐P1′ or aspartate fixed at P1. The results show a preference for the tetrapeptide sequence DNLD for both enzymes, but the P4 position of zebrafish Casp3a also accommodates valine equally well. We determined the structure of zebrafish Casp3a to 2.28Å resolution by X‐ray crystallography, and when combined with molecular dynamics simulations, the results suggest that a limited number of amino acid substitutions near the active site result in plasticity of the S4 sub‐site by increasing flexibility of one active site loop and by affecting hydrogen‐bonding with substrate. The data show that zebrafish Casp3a exhibits a broader substrate portfolio, suggesting overlap with the functions of caspase‐6 in zebrafish development.  相似文献   
114.
115.
116.
117.
The structures of the cytosolic portion of voltage activated sodium channels (CTNav) in complexes with calmodulin and other effectors in the presence and the absence of calcium provide information about the mechanisms by which these effectors regulate channel activity. The most studied of these complexes, those of Nav1.2 and Nav1.5, show details of the conformations and the specific contacts that are involved in channel regulation. Another voltage activated sodium channel, Nav1.4, shows significant calcium dependent inactivation, while its homolog Nav1.5 does not. The available structures shed light on the possible localization of the elements responsible for this effect. Mutations in the genes of these 3 Nav channels are associated with several disease conditions: Nav1.2, neurological conditions; Nav1.4, syndromes involving skeletal muscle; and Nav1.5, cardiac arrhythmias. Many of these disease-specific mutations are located at the interfaces involving CTNav and its effectors.  相似文献   
118.
We describe the simultaneous amplification of different segments of foreign DNA in transgenic plants using the polymerase chain reaction (PCR). We used PCR to simultaneously amplify different regions of transformed T-DNA in order to assay the integrity of transformed constructions in primary tomato transformants. We also used simultaneous PCR amplification to examine the segregation of transformed sequences in progeny of primary transformants. A tomato transformant containing the maize transposable elementAc was crossed to transformants containing the non-autonomousDs1 element flanked by maizeAdh1 sequences. We then ran PCR reactions on DNA from F1 progeny using two sets of primers, one set homologous toAc and one set homologous toAdh1 sequences on either side ofDs1. Because theAc andAdh1 primers resulted in amplification of fragments of different sizes, it was possible to monitor the inheritance ofAc and theDs1 containingAdh1 genein a single reaction. Additionally, it was possible to identify F1 plants in whichDs1 had excised by the amplification of a fragment the size predicted for an empty donor site. In order to run these reactions, we have constructed a simple and inexpensive thermal cycler which, when used in conjunction with the rapid miniscreen plant DNA isolation procedure described, allows the processing of a large number of samples in a single day. Therefore, we have shown that PCR can be a useful tool to monitor the integrity of foreign genes in transgenic plants, to follow the segregation of foreign DNA in progeny, and to assay for the excision of transposable elements.  相似文献   
119.
Summary A DNA amplification is correlated with the dominant, unstable cob-354 cobalt resistance trait in the cellular slime mold, Dictyostelium discoideum. The amplified DNA is present as about 50 copies of an extrachromosomal element. Cells grown under nonselective conditions in the absence of cobalt ions lose both the cobalt resistance trait and all extrachromosomal copies of the amplified DNA. The amplified DNA is transferrable to new genetic backgrounds by parasexual genetic crosses. These results explain the inability to map the cob-354 trait to a linkage group. The chromosomal origin of the amplified DNA is group III or VI. Thus the resistance trait appears to be independent of the previously known cobalt resistance locus, cobA, which maps to group VII. A developmental defect involving the production of multiply-tipped aggregates that do not complete fruiting body formation also is correlated with the presence of the amplified DNA.  相似文献   
120.
The electrical properties of the frog taste cells during gustatory stimulations with distilled water and varying concentrations of NaCl were studied with intracellular microelectrodes. Under the Ringer adaptation of the tongue, two types of taste cells were distinguished by the gustatory stimuli. One type, termed NaCl-sensitive (NS) cells, responded to water with hyperpolarizations and responded to concentrated NaCl with depolarizations. In contrast, the other type of cells, termed water-sensitive (WS) cells, responded to water depolarizations and responded to concentrated NaCl with hyperpolarizations. The membrane resistance of both taste cell types increased during the hyperpolarizing receptor potentials and decreased during the depolarizing receptor potentials, Reversal potentials for the depolarizing and hyperpolarizing responses in each cell type were a few millivolts positive above the zero membrane potential. When the tongue was adapted with Na-free Ringer solution for 30 min, the amplitude of the depolarizing responses in the NS cells reduced to 50% of the control value under normal Ringer adaptation. On the basis of the present results, it is concluded (a) that the depolarizing responses of the NS and WS cells under the Ringer adaptation are produced by the permeability increase in some ions, mainly Na+ ions across the taste cell membranes, and (b) that the hyperpolarizing responses of both types of taste cells are produced by a decrease in the cell membrane permeability to some ions, probably Na+ ions, which is slightly enhanced during the Ringer adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号