首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   12篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   8篇
  2017年   4篇
  2016年   19篇
  2015年   13篇
  2014年   20篇
  2013年   12篇
  2012年   31篇
  2011年   25篇
  2010年   15篇
  2009年   25篇
  2008年   26篇
  2007年   22篇
  2006年   13篇
  2005年   16篇
  2004年   16篇
  2003年   11篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1992年   2篇
  1989年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有309条查询结果,搜索用时 31 毫秒
91.
Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, plays an important physiological role in regulating blood pressure. ACE-inhibitory peptides derived from food proteins have potential pharmaceutical and human health uses. In this study, we prepared a fermented soybean extract (FSE) through a rapid fermentation at an elevated temperature to accelerate proteolytic hydrolysis and described purification procedures to discover potent ACE-inhibitory peptides from FSE. After 3 days of aging, FSE exhibited ACE-inhibitory activity with an IC50 value of 1.46 mg/mL. Purification of novel ACE-inhibitory peptides was carried out using ultrafiltration and consecutive chromatographic methods. A novel ACE-inhibitory peptide, with 66-fold increase in ACE-inhibitory activity compared to that of FSE, was isolated from FSE through a five-step purification procedure. The amino acid sequence of the purified ACE-inhibitory peptides was determined to be Leu-Val-Gln-Gly-Ser by Edman degradation method, and its IC50 value was 22 μg/mL (43.7 μM).  相似文献   
92.
Zinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site. The generation of obligate heterodimeric ZFNs was shown to significantly reduce ZFN-associated cytotoxicity in single-site genome editing strategies. To further expand the application range of ZFNs, we employed a combination of in silico protein modeling, in vitro cleavage assays, and in vivo recombination assays to identify autonomous ZFN pairs that lack cross-reactivity between each other. In the context of ZFNs designed to recognize two adjacent sites in the human HOXB13 locus, we demonstrate that two autonomous ZFN pairs can be directed simultaneously to two different sites to induce a chromosomal deletion in ∼10% of alleles. Notably, the autonomous ZFN pair induced a targeted chromosomal deletion with the same efficacy as previously published obligate heterodimeric ZFNs but with significantly less toxicity. These results demonstrate that autonomous ZFNs will prove useful in targeted genome engineering approaches wherever an application requires the expression of two distinct ZFN pairs.  相似文献   
93.
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters.  相似文献   
94.
Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.  相似文献   
95.
96.
Treatment of MCF-7 cells with tamoxifen induced vacuole formation and cell death. Levels of the autophagy marker, microtubule-associated protein light chain 3 (LC3)-II also increased, and GFP-LC3 accumulated in and around vacuoles in MCF-7 cells exposed to tamoxifen, indicating that autophagy is involved in tamoxifen-induced changes. Live-cell confocal microscopy with FluoZin-3 staining and transmission electron microscopy with autometallographic staining revealed that labile zinc(II) ion (Zn2+) accumulated in most acidic LC3(+) autophagic vacuoles (AVs). Chelation of Zn2+ with N,N,N,N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) blocked the increase in phospho-Erk and LC3-II levels, and attenuated AV formation and cell death. Conversely, the addition of ZnCl2 markedly potentiated tamoxifen-induced extracellular signal-regulated kinase (Erk) activation, autophagy and cell death, indicating that Zn2+ has an important role in these events. Tamoxifen-induced death was accompanied by increased oxidative stress and lysosomal membrane permeabilization (LMP) represented as release of lysosomal cathepsins into cytosol. Treatment with the antioxidant N-acetyl-l-cysteine (NAC) blunted the increase in Zn2+ levels and reduced LC3-II conversion, cathepsin D release and cell death induced by tamoxifen. And cathepsin inhibitors attenuated cell death, indicating that LMP contributes to tamoxifen-induced cell death. Moreover, TPEN blocked tamoxifen-induced cathepsin D release and increase in oxidative stress. The present results indicate that Zn2+ contributes to tamoxifen-induced autophagic cell death via increase in oxidative stress and induction of LMP.  相似文献   
97.
Engineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using "modular assembly" have been described, standardized reagents and protocols that permit rapid, cross-platform "mixing-and-matching" of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest. Our reagents have been standardized on a single platform, enabling facile mixing-and-matching of modules and transfer of assembled arrays to expression vectors without the need for specialized knowledge of zinc finger sequences or complicated oligonucleotide design. We also describe a bacterial cell-based reporter assay for rapidly screening the DNA-binding activities of assembled multi-finger arrays. This protocol can be completed in approximately 24-26 d.  相似文献   
98.
99.
Overexpression of a chloroplast-localized Cu/Zn superoxide dismutase (chCu/ZnSOD) obtained from lily significantly affects the growth and shape of potato tubers from anin vitro culture system (Kim et al., 2007). Here, we further characterized the sense and antisense transgenic potatoes grown and pots and the greenhouse to investigate the potential for more practical field applications of such phenotypic manipulations. Underin vitro conditions, antisense transgenic plants showed increased shoot growth, delayed tuberization, and altered tuber shapes. When antisense plants were treated with paclobutrazol, an inhibitor of GA biosynthesis, tuberization efficiency and tuber shape were recovered to a status very similar to that ofin vitro- grown wild-type plants. Our results strongly support the idea that potato tuberization and shape is mediated by SOD-catalyzed reactive oxygen species, possibly via the GA biosynthesis pathway.  相似文献   
100.
In recent years, two methods have been developed that may eventually allow the targeted regulation of a broad repertoire of genes. The engineered protein strategy involves selecting Cys(2)His(2) zinc finger proteins that will recognize specific sites in the major groove of DNA. The small molecule approach utilizes pairing rules for pyrrole-imidazole polyamides that target specific sites in the minor groove. To understand how these two methods might complement each other, we have begun exploring how polyamides and zinc fingers interact when they bind the same site on opposite grooves of DNA. Although structural comparisons show no obvious source of van der Waals collisions, we have found a significant "negative cooperativity" when the two classes of compounds are directed to the overlapping sites. Examining available crystal structures suggests that this may reflect differences in the precise DNA conformation, especially with regard to width and depth of the grooves, that is preferred for binding. These results may give new insights into the structural requirements for zinc finger and polyamide binding and may eventually lead to the development of even more powerful and flexible schemes for regulating gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号