首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   25篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   14篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   16篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1982年   1篇
排序方式: 共有157条查询结果,搜索用时 7 毫秒
121.
Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data.  相似文献   
122.
GBD–CD2 is an α-1,2 transglucosidase engineered from DSR-E, a glucansucrase naturally produced by Leuconostoc mesenteroides NRRL B-1299. This enzyme catalyses from sucrose, the α-1,2 transglucosylation of glucosyl moieties onto α-1,6 dextran chains. Steady-state kinetic studies showed that hydrolysis and transglucosylation reactions occurred at the early stage of the reaction in the presence of 70 kDa dextran as acceptor and sucrose. The transglucosylation reaction catalysed by GBD–CD2 follows a Ping Pong Bi Bi mechanism with a high k cat value of 970 s−1. The amount of the synthesised α-1,2 side chains was found to be directly dependent on the initial molar ratio [Sucrose]/[Dextran]. Dextrans with controlled α-1,2 linkage contents ranging from 13% to 40% were synthesised. The procedure resulted in the production of dextrans with the highest content of α-1,2 linkages ever reported.  相似文献   
123.
The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.  相似文献   
124.

Background

Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy.

Methodology/Principal Findings

We locally deposited oligodeoxynucleotide (ODN) and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins.

Conclusions/Significance

The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures.  相似文献   
125.
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.  相似文献   
126.
The secretions of molecules by cells are of tremendous interest for both fundamental insights studies and medical purposes. In this study, we propose a new biochip-based approach for the instantaneous monitoring of protein secretions, using antibody production by B lymphocytes cultured in vitro. This was possible thanks to the Surface Plasmon Resonance imaging (SPRi) of a protein biochip where antigen proteins (Hen Egg Lysozyme, HEL) were micro-arrayed along with series of control proteins. B cell hybridomas were cultured on the chip and the secretion of immunoglobulins (antibody) specific to HEL was monitored in real-time and detected within only few minutes rather than after a 30-60 min incubation with standard ELISA experiments. This fast and sensitive detection was possible thanks to the sedimentation of the cells on the biochip sensitive surface, where local antibody concentrations are much higher before dilution in the bulk medium. An other interesting feature of this approach for the secretion monitoring was the independence of the SPR response--after normalization--regarding to the density of the surface-immobilized probes. Such biosensor might thus pave the way to new tools capable of both qualitative and semi-quantitative analysis of proteins secreted by other immune cells.  相似文献   
127.
128.
Candida guilliermondii is an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. This yeast also remains an interesting biotechnological model for the industrial production of value-added metabolites. The recent whole-genome sequencing of the C. guilliermondii ATCC 6260 reference strain provides an interesting resource for elucidating new molecular events supporting pathogenicity, antifungal resistance and for exploring the potential of yeast metabolic engineering. In the present study, we designed an efficient transformation system for C. guilliermondii wild-type strains using both nourseothricin- and hygromycin B-resistant markers. To demonstrate the potential of these drug-resistant cassettes, we carried out the disruption and the complementation of the C. guilliermondii FCY1 gene (which encodes cytosine deaminase) known to be associated with flucytosine sensitivity in yeast. These two new dominant selectable markers represent powerful tools to study the function of a large pallet of genes in this yeast of clinical and biotechnological interest.  相似文献   
129.
The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号