首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   25篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   15篇
  2014年   14篇
  2013年   19篇
  2012年   20篇
  2011年   17篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有165条查询结果,搜索用时 31 毫秒
81.
Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.  相似文献   
82.
Native fullerene is notoriously insoluble in water and forms aggregates toxic to cell membranes, thus limiting its use in nanomedicine. In contrast, water-soluble fullerenol is compatible with biological systems and shows low in vivo toxicity on human cell lines. The interaction mechanism between these hydrophilic nanoparticles and biological membranes is however not well understood. Therefore, in this work, the effect of fullerenol on model eukaryotic and bacterial membranes was investigated using (31)P- and (2)H solid-state NMR as well as FTIR spectroscopy. DPPC/cholesterol and DPPC/DPPG bilayers were used to mimic eukaryotic and bacterial cell membranes, respectively. Our results show low affinity of fullerenol for DPPC/cholesterol bilayers but a clear interaction with model bacterial membranes. A preferential affinity of fullerenol for the anionic phospholipids DPPG in DPPC/DPPG membranes is also observed. Our data suggest that fullerenol remains at the water/bilayer interface of eukaryote-like membranes. They also indicate that the presence of a polar group such as DPPG's hydroxyl moiety at the bilayer surface plays a key role in the interaction of fullerenol with membranes. Hydrogen bonding of fullerenol nanoparticles with DPPGs' OH groups is most likely responsible for inducing lipid segregation in the lipid bilayer. Moreover, the location of the nanoparticles in the polar region of DPPG-rich regions appears to disturb the acyl chain packing and increase the membrane fluidity. The preferential interaction of fullerenol with lipids mostly found in bacterial membranes is of great interest for the design of new antibiotics.  相似文献   
83.
84.
85.
We have investigated the potential effects of global sea-level rise on Mediterranean coastal wetlands by studying the Coleoptera and pollen fossil remains in a 7000-year sedimentary record, which we obtained from a coastal marshy area on a small Mediterranean island (Cavallo, southern Corsica). Using beetle structural diversity and plant composition as recorded prior to marine and human influences as a ‘past analogue’, we reconstructed the impact of the Holocene relative sea-level rise on the coastal ecosystem. Our results show that beetle species richness and diversity were highest when freshwater was predominant, which was the case until about 6200 years ago. We also found that a major increase in salinity had occurred over the last 5300 years, experiencing a peak rate of increase at about 3700 years ago. These changes are clearly reflected in the fossil records of the following key taxa: halophilous beetles (Ochthebius sp., Pterostichus cursor), halophilous plants (Chenopodiaceae, Tamarix) and non-pollen palynomorphs (microforaminiferal linings). In particular, we note that the majority (60%) of wetland beetle fauna became locally extinct in response to the salinity changes, and these changes were exacerbated by the recent aggravation of human pressures on the island. The major part of this diversity loss occurred 3700 years ago, when the relative Mediterranean sea-level rose above ?1.5 ± 0.3 meters. These findings demonstrate the value of fossil beetle assemblage analysis as a diagnostic for the response of coastal wetland biodiversity to past salinity increases, and serve as a means of forecasting the effects of sea-level rise in the future. The conservation of inland freshwater bodies could ultimately prove essential to preserving freshwater insect diversity in threatened coastal environments.  相似文献   
86.
A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.  相似文献   
87.
88.
89.
90.
Using a modified random arbitrarily primed PCR approach, the operon encoding the Enterococcus faecalis JH2-2 CroRS two-component regulatory system was shown to be repressed during stationary phase, and a CroRS-regulated operon (glnQHMP) was identified. Gel retardation assays showed that the CroR regulator binds specifically to the glnQHMP promoter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号