首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   25篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   15篇
  2014年   14篇
  2013年   19篇
  2012年   20篇
  2011年   17篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有165条查询结果,搜索用时 93 毫秒
31.
The quest for new materials is one of the main factors propelling recent advances in organic photovoltaics. Star‐shaped small molecules (SSMs) have been proven promising candidates as perspective donor material due to the increase in numbers of excitation pathways caused by the degeneracy of the lowest unoccupied molecular orbital (LUMO) level. In order to unravel the pathways of the initial photon‐to‐charge conversion, the photovoltaic blends based on three different SSMs with a generic structure of N(phenylene‐nthiophene‐dicyanovinyl‐alkyl)3 (n = 1–3), and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor are investigated by ultrafast photoinduced absorption spectroscopy assisted by density functional theory calculations. It is shown that both electron transfer from SSMs to PC71BM and hole transfer from PC71BM to SSMs are equally significant for generation of long‐lived charges. In contrast, intramolecular (intra‐SSM) charge separation results in geminate recombination and therefore constitutes a loss channel. Overall, up to 60% of long‐lived separated charges are generated at the optimal PC71BM concentrations. The obtained results suggest that further improvement of the SSM‐based solar cells is feasible via optimization of blend morphology and by suppressing the intra‐SSM recombination channel.  相似文献   
32.
We have recently established and characterized cellular clones deriving from MDA-MB-231 breast cancer cells that express the human G(D3) synthase (GD3S), the enzyme that controls the biosynthesis of b- and c-series gangliosides. The GD3S positive clones show a proliferative phenotype in the absence of serum or growth factors and an increased tumor growth in severe immunodeficient mice. This phenotype results from the constitutive activation of the receptor tyrosine kinase c-Met in spite of the absence of ligand and subsequent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt pathways. Here, we show by mass spectrometry analysis of total glycosphingolipids that G(D3) and G(D2) are the main gangliosides expressed by the GD3S positive clones. Moreover, G(D2) colocalized with c-Met at the plasma membrane and small interfering RNA silencing of the G(M2)/G(D2) synthase efficiently reduced the expression of G(D2) as well as c-Met phosphorylation and reversed the proliferative phenotype. Competition assays using anti-G(D2) monoclonal antibodies also inhibit proliferation and c-Met phosphorylation of GD3S positive clones in serum-free conditions. Altogether, these results demonstrate the involvement of the disialoganglioside G(D2) in MDA-MB-231 cell proliferation via the constitutive activation of c-Met. The accumulation of G(D2) in c-Met expressing cells could therefore reinforce the tumorigenicity and aggressiveness of breast cancer tumors.  相似文献   
33.
Plant interactions are suggested to shift from competition to facilitation and collapse with increasing grazing pressure. The existence of this full range of plant interactions and the role of underlying mechanisms (i.e. release from competition and protecting effect) in response to herbivory remains poorly documented and mainly described in terrestrial systems. We use a large grazing disturbance gradient (five levels of grazing) to test its effect on the outcome of plant interactions and underlying mechanisms in freshwater ecosystems. In a mesocosm experiment, we manipulated the presence of neighbouring plants to test their negative (competition) or protective (facilitation) effects on target plants along the grazing pressure gradient. We predicted that plant interactions 1) shift from competition to indirect facilitation with increased grazing pressure, 2) indirect facilitation collapses at high levels of grazing, 3) release from competition mainly drives the outcome in lowly grazed conditions and, 4) decreased protection occurs in highly grazed conditions responsible for the collapse of facilitation. This study shows the occurrence of the full range of outcomes in plant interactions under a wide spectrum of grazing pressure and indicates how the complex combination of underlying mechanisms shapes variations in plant interactions. We show that both, the release from competition and the increased protection by neighbouring plants drove the shift from competition to indirect facilitation. Declined protection by neighbouring plants resulted in a collapse of indirect facilitation for survival under intense herbivory. Our study provides the first experimental evidence of indirect facilitation structuring freshwater ecosystems thereby validating important ecological concepts mainly developed for terrestrial ecosystems.  相似文献   
34.
Gene electrotransfer can be obtained not just on single cells in diluted suspension. For more than 10 years, this is a quasi routine strategy in tissue on the living animal and a few clinical trials have now been approved. New problems have been brought by the close contacts of cells in tissue both on the local field distribution and on the access of DNA to target cells. They need to be solved to provide a further improvement in the efficacy and safety of protein expression. There is a competition between gene transfer and cell destruction. Nevertheless, present results are indicative that electrotransfer is a promising approach for gene therapy. High level and long-lived expression of proteins can be obtained in muscles. This is used for a successful method of electrovaccination.  相似文献   
35.
Caspase-3 and -7 are considered functionally redundant proteases with similar proteolytic specificities. We performed a proteome-wide screen on a mouse macrophage lysate using the N-terminal combined fractional diagonal chromatography technology and identified 46 shared, three caspase-3-specific, and six caspase-7-specific cleavage sites. Further analysis of these cleavage sites and substitution mutation experiments revealed that for certain cleavage sites a lysine at the P5 position contributes to the discrimination between caspase-7 and -3 specificity. One of the caspase-7-specific substrates, the 40 S ribosomal protein S18, was studied in detail. The RPS18-derived P6–P5′ undecapeptide retained complete specificity for caspase-7. The corresponding P6–P1 hexapeptide still displayed caspase-7 preference but lost strict specificity, suggesting that P′ residues are additionally required for caspase-7-specific cleavage. Analysis of truncated peptide mutants revealed that in the case of RPS18 the P4–P1 residues constitute the core cleavage site but that P6, P5, P2′, and P3′ residues critically contribute to caspase-7 specificity. Interestingly, specific cleavage by caspase-7 relies on excluding recognition by caspase-3 and not on increasing binding for caspase-7.Caspases, a family of evolutionarily conserved proteases, mediate apoptosis, inflammation, proliferation, and differentiation by cleaving many cellular substrates (13). The apoptotic initiator caspases (caspase-8, -9, and -10) are activated in large signaling platforms and propagate the death signal by cleavage-induced activation of executioner caspase-3 and -7 (4, 5). Most of the cleavage events occurring during apoptosis have been attributed to the proteolytic activity of these two executioner caspases, which can act on several hundreds of proteins (2, 3, 6, 7). The substrate degradomes of the two main executioner caspases have not been determined but their identification is important to gaining greater insight in their cleavage specificity and biological functions.The specificity of caspases was rigorously profiled by using combinatorial tetrapeptide libraries (8), proteome-derived peptide libraries (9), and sets of individual peptide substrates (10, 11). The results of these studies indicate that specificity motifs for caspase-3 and -7 are nearly indistinguishable with the canonical peptide substrate, DEVD, used to monitor the enzymatic activity of both caspase-3 and -7 in biological samples. This overlap in cleavage specificity is manifested in their generation of similar cleavage fragments from a variety of apoptosis-related substrates such as inhibitor of caspase-activated DNase, keratin 18, PARP,1 protein-disulfide isomerase, and Rho kinase I (for reviews, see Refs. 2, 3, and 7). This propagated the view that these two caspases have completely redundant functions during apoptosis. Surprisingly, mice deficient in one of these caspases (as well as mice deficient in both) have distinct phenotypes. Depending on the genetic background of the mice, caspase-3-deficient mice either die before birth (129/SvJ) or develop almost normally (C57BL/6J) (1214). This suggests that dynamics in the genetic background, such as increased caspase-7 expression, compensate for the functional loss of caspase-3 (15). In the C57BL/6J background, caspase-7 single deficient mice are also viable, whereas caspase-3 and -7 double deficient mice die as embryos, further suggesting redundancy (1214). However, because caspase-3 and -7 probably arose from gene duplication between the Cephalochordata-Vertebrata diversion (16), they might have acquired different substrate specificities during evolution. Caspase-3 and -7 do exhibit different activities on a few arbitrarily identified natural substrates, including BID, X-linked inhibitor of apoptosis protein, gelsolin, caspase-6, ataxin-7, and co-chaperone p23 (1720). In addition, caspase-3 generally cleaves more substrates during apoptosis than caspase-7 and therefore appears to be the major executioner caspase. Moreover, a recent report describing caspase-1-dependent activation of caspase-7, but not of caspase-3, in macrophages in response to microbial stimuli supports the idea of a non-redundant function for caspase-7 downstream of caspase-1 (21).Commercially available “caspase-specific” tetrapeptide substrates are widely used for specific caspase detection, but they display substantial promiscuity and cannot be used to monitor individual caspases in cells (22, 23). Detecting proteolysis by measuring the release of C-terminal fluorophores, such as 7-amino-4-methylcoumarin (amc), restricts the specificity of these peptide substrates to non-prime cleavage site residues, which may have hampered the identification of specific cleavage events. To address this limitation, a recently developed proteomics technique, called proteomic identification of protease cleavage sites, was used to map both non-prime and prime preferences for caspase-3 and -7 on a tryptic peptide library (9). However, no clear distinction in peptide recognition motifs between caspase-3 and -7 could be observed (9). Because not all classical caspase cleavage sites are processed (7), structural or post-translational higher order constraints are likely involved in steering the cleavage site selectivity. Peptide-based approaches generally overlook such aspects.We made use of the COFRADIC N-terminal peptide sorting methodology (2426) to profile proteolytic events of caspase-3 and -7 in a macrophage proteome labeled by triple stable isotope labeling by amino acids in cell culture (SILAC), which allowed direct comparison of peak intensities in peptide MS spectra and consequent quantification of N termini that are equally, preferably, or exclusively generated by the action of caspase-3 or -7 (26, 27). We identified 55 cleavage sites in 48 protein substrates, encompassing mutual, preferred, and unique caspase-3 and -7 cleavage sites.  相似文献   
36.
The Experiment Preparation Unit (EPU) is a facility that prepares biological samples for their upcoming experiment within Biolab (Columbus). For logistical reasons and to avoid the influence of the heavy launch loads and the microgravity environment before the actual initiation of the experiment, biological samples will be sent cryogenically frozen to the International Space Station. The Experiment Preparation Unit will prepare those samples by thawing and extracting the cryogenic fluid automatically after minimal crew intervention for set-up of the system. The EPU can be tele-operated directly from ground and consists of three major subsystems to guarantee its functionality: Functional Platform, Base and Control Panel.  相似文献   
37.
38.
39.
As more genomes are sequenced, we are facing the challenge of rapidly unraveling the functions of genes. To that end, cell microarrays have recently been described that transfect thousands of nucleic acids in parallel and can be used to analyze the phenotypic consequences of such perturbations. As many parameters can influence the efficacy of transfection in such a format, we describe some important features in manufacturing cell microarrays that may improve reliability and efficiency of both plasmid DNA and siRNA transfection. We have also developed image analysis software that allows automatic detection of cell clusters, quantification of transfection efficiency and levels of expression/extinction of genes. Along with cell microarrays, this bioinformatic tool should expedite functional exploration of the human genome.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号