首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   19篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   13篇
  2013年   9篇
  2012年   21篇
  2011年   19篇
  2010年   9篇
  2009年   15篇
  2008年   22篇
  2007年   22篇
  2006年   13篇
  2005年   17篇
  2004年   13篇
  2003年   16篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有264条查询结果,搜索用时 234 毫秒
61.
Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = −0.76; P<0.01) and lactate (r = −0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4±4.0 vs 14.2±2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.  相似文献   
62.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   
63.
Interleukin-6 increases in skeletal muscle during exercise, and evidence points to Ca2+ as an initiator of IL-6 production. However, the signalling pathway whereby this occurs is unknown. One candidate for Ca2+ -mediated IL-6 induction is calcineurin, an activator of NF-AT. Here we investigated whether skeletal myocytes produce IL-6 in a Ca2+/calcineurin-dependent manner, and whether TNF-alpha, an inducer of IL-6, is affected by these stimuli. Human skeletal muscle cell cultures were stimulated with ionomycin time-and dose-dependently to elevate intracellular Ca2+ levels, with or without addition of cyclosporin A (CSA); a calcineurin inhibitor. mRNA was extracted from myocytes and analysed for IL-6 and TNF-alpha gene expression. IL-6 mRNA increased time- and dose-dependently with ionomycin stimulation, an effect that was blunted by approximately 75% in the presence of CSA. In contrast, TNF-alpha gene expression was decreased by approximately 70% in response to ionomycin treatment, but increased in response to addition of CSA. These data demonstrate that IL-6 and TNF-alpha are regulated differentially in skeletal muscle cells in response to a Ca2+ stimulus. Blocking the calcineurin pathway resulted in inhibition of the IL-6 response to ionomycin, whereas TNF-alpha increased by addition of CSA, further indicating a differential regulation of IL-6 and TNF-alpha in human skeletal myocytes.  相似文献   
64.
Dihydropyrimidine dehydrogenase (DPD) is the first and rate-limiting enzyme in the pathway for degradation of pyrimidines, responsible for the reduction of the 5,6-double bond to give the dihydropyrimidine using NADPH as the reductant. The enzyme is a dimer of 220 kDa, and each monomer contains one FAD, one FMN, and four FeS clusters. The FAD is situated at one end of the protein, the FMN is at the other, and four FeS clusters form a conduit for electron transfer between the two sites comprised of two FeS clusters from each monomer. The enzyme has a two-site ping-pong mechanism with NADPH reducing FAD and reduced FMN responsible for reducing the pyrimidine. Solvent deuterium kinetic isotope effects indicate a rate-limiting reduction of FAD accompanied by pH-dependent structural rearrangement for proper orientation of the nicotinamide ring. Transfer of electrons from site 1 to site 2 is downhill with FMN rapidly reduced by FADH(2) via the FeS conduit. The reduction of the pyrimidine at site 2 proceeds using general acid catalysis with protonation at N5 of FMN carried out by K574 as FMN is reduced and protonation at C5 of the pyrimidine by C671 as it is reduced. Kinetic isotope effects indicate a stepwise reaction for reduction of the pyrimidine with hydride transfer at C6 preceding proton transfer at C5, with a late transition state for the proton transfer step.  相似文献   
65.
The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel inhibitor glibenclamide reduced (P < 0.05) interstitial K+ at rest from approximately 4.5 to 4.0 mM, whereas the concentration in the control leg remained constant. Glibenclamide had no effect on the interstitial K+ accumulation during knee-extensor exercise at a power output of 60 W. In contrast to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+.  相似文献   
66.
p58/ERGIC-53 is a calcium-dependent animal lectin that acts as a cargo receptor, binding to a set of glycoproteins in the endoplasmic reticulum (ER) and transporting them to the Golgi complex. It is similar in structure to calcium-dependent leguminous lectins. We have determined the structure of the carbohydrate-recognition domain of p58/ERGIC-53 in its calcium-bound form. The structure reveals localized but large conformational changes in relation to the previously determined metal ion-free structure, mapping mostly to the ligand-binding site. It reveals the presence of two calcium ion-binding sites located 6A apart, one of which has no equivalent in the plant lectins. The second metal ion-binding site present in that class of lectins, binding Mn(2+), is absent from p58/ERGIC-53. The absence of a short loop in the ligand-binding site in this protein suggests that it has adapted to optimally bind the high-mannose Man(8)(GlcNAc)(2) glycan common to glycoproteins at the ER exit stage.  相似文献   
67.
Anthracyclines are aromatic polyketide antibiotics, and several of these compounds are widely used as anti-tumor drugs in chemotherapy. Aclacinomycin-10-hydroxylase (RdmB) is one of the tailoring enzymes that modify the polyketide backbone in the biosynthesis of these metabolites. RdmB, a S-adenosyl-L-methionine-dependent methyltransferase homolog, catalyses the hydroxylation of 15-demethoxy-epsilon-rhodomycin to beta-rhodomycin, one step in rhodomycin biosynthesis in Streptomyces purpurascens. The crystal structure of RdmB, determined by multiwavelength anomalous diffraction to 2.1A resolution, reveals that the enzyme subunit has a fold similar to methyltransferases and binds S-adenosyl-L-methionine. The N-terminal domain, which consists almost exclusively of alpha-helices, is involved in dimerization. The C-terminal domain contains a typical alpha/beta nucleotide-binding fold, which binds S-adenosyl-L-methionine, and several of the residues interacting with the cofactor are conserved in O-methyltransferases. Adjacent to the S-adenosyl-L-methionine molecule there is a large cleft extending to the enzyme surface of sufficient size to bind the substrate. Analysis of the putative substrate-binding pocket suggests that there is no enzymatic group in proximity of the substrate 15-demethoxy-epsilon-rhodomycin, which could assist in proton abstraction and thus facilitate methyl transfer. The lack of a suitably positioned catalytic base might thus be one of the features responsible for the inability of the enzyme to act as a methyltransferase.  相似文献   
68.
Stehr M  Lindqvist Y 《Proteins》2004,55(3):613-619
NrdH-redoxins constitute a family of small redox proteins, which contain a conserved CXXC sequence motif, and are characterized by a glutaredoxin-like amino acid sequence but a thioredoxin-like activity profile. Here we report the structure of Corynebacterium ammoniagenes NrdH at 2.7 A resolution, determined by molecular replacement using E. coli NrdH as model. The structure is the first example of a domain-swapped dimer from the thioredoxin family. The domain-swapped structure is formed by an inter-chain two-stranded anti-parallel beta-sheet and is stabilized by electrostatic interactions at the dimer interface. Size exclusion chromatography, and MALDI-ESI experiments revealed however, that the protein exists as a monomer in solution. Similar to E. coli NrdH-redoxin and thioredoxin, C. ammoniagenes NrdH-redoxin has a wide hydrophobic pocket at the surface that could be involved in binding to thioredoxin reductase. However, the loop between alpha2 and beta3, which is complementary to a crevice in the reductase in the thioredoxin-thioredoxin reductase complex, is the hinge for formation of the swapped dimer in C. ammoniagenes NrdH-redoxin. C. ammoniagenes NrdH-redoxin has the highly conserved sequence motif W61-S-G-F-R-P-[DE]67 which is unique to the NrdH-redoxins and which determines the orientation of helix alpha3. An extended hydrogen-bond network, similar to that in E. coli NrdH-redoxin, determines the conformation of the loop formed by the conserved motif.  相似文献   
69.
70.
Summary Chromosome analyses were carried out in lymphocytes of 32 workers occupationally exposed for more than 20 years to 50 Hz alternating electric and magnetic fields in 380 kV switchyards. As compared with a control group of 22 workers of similar age and occupation but without field exposure neither the yields of structural chromosome changes nor the SCE-frequencies were increased. The difference of cytogenetic data after occupational exposure to ionizing radiation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号