首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   11篇
  2013年   9篇
  2012年   19篇
  2011年   16篇
  2010年   8篇
  2009年   13篇
  2008年   20篇
  2007年   20篇
  2006年   14篇
  2005年   15篇
  2004年   11篇
  2003年   13篇
  2002年   9篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
161.
162.
We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluorescein) were used to detect H(2)O(2) and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p <.05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p <.05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p <.05). Intense electrical stimulation also increased (p <.05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N(G)-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H(2)O(2) and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H(2)O(2) and NO may constitute an important defense mechanism against the formation of intracellular (*)OH and (*)ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures.  相似文献   
163.
Formyl-CoA transferase catalyses transfer of CoA from formate to oxalate in the first step of oxalate degradation by Oxalobacter formigenes, a bacterium present in the intestinal flora which is implicated in oxalate catabolism in mammals. Formyl-CoA transferase is a member of a family of CoA-transferases for which no structural information is available. We now report the three-dimensional structure of O.formigenes formyl-CoA transferase, which reveals a novel fold and a very striking assembly of the homodimer. The subunit is composed of a large and a small domain where residues from both the N- and C-termini of the subunit are part of the large domain. The linkers between the domains give the subunit a circular shape with a hole in the middle. The enzyme monomers are tightly interacting and are interlocked. This fold requires drastic rearrangement of approximately 75 residues at the C-terminus for formation of the dimer. The structure of a complex of formyl-CoA transferase with CoA is also reported and sets the scene for a mechanistic understanding of enzymes of this family of CoA-transferases.  相似文献   
164.
Transaldolase catalyzes transfer of a dihydroxyacetone moiety from a ketose donor to an aldose acceptor. During catalysis, a Schiff-base intermediate between dihydroxyacetone and the epsilon-amino group of a lysine residue at the active site of the enzyme is formed. This Schiff-base intermediate has been trapped by reduction with potassium borohydride, and the crystal structure of this complex has been determined at 2.2 A resolution. The overall structures of the complex and the native enzyme are very similar; formation of the intermediate induces no large conformational changes. The dihydroxyacetone moiety is covalently linked to the side chain of Lys 132 at the active site of the enzyme. The Cl hydroxyl group of the dihydroxyacetone moiety forms hydrogen bonds to the side chains of residues Asn 154 and Ser 176. The C3 hydroxyl group interacts with the side chain of Asp 17 and Asn 35. Based on the crystal structure of this complex a reaction mechanism for transaldolase is proposed.  相似文献   
165.
Primary production in coastal waters is generally nitrogen-limited due to efficient nitrogen sink pathways, which therefore limit further eutrophication. In this context, the significance of ephemeral mud blankets at shallow depth has been characterised using a simple computational box model. Bed materials from several synoptic grab-sample surveys in Laholmsbukten, a shallow embayment of the Kattegat Sea, were analysed. Sediment trap and current meter data provided an assessment of fine material transport; the frequency of loose mud resuspension was estimated to vary between three and ten events per month in the spring, depending on the wind conditions.Mud blankets appear to be deposited following major spring and fall phytoplankton blooms, they are only a few centimetres thick, they are composed mainly of pelletized organic material and detritus and they have a high water content (80% wet weight) and nitrogen content (0.5% dry weight). In the course of export from the bay, the muds undergo continuous resuspension, redeposition and biological breakdown. In one September day, the amount of particulate nitrogen redeposited in sediment traps was of equivalent magnitude to the entire mud blanket deposit (5 g N/m-2 or a 4 mm deposit as a bay-wide mean). The presence of mud blankets is believe to control the nitrogen budget and water quality in the bay. A simple model proved compatible with observed mud blanket presence and rates of denitrification. Calm conditions are conducive to the loss of bound nitrogen and free oxygen within the bay as a result of prolonged denitrification and pelagic and benthic nitrogen regeneration. If fine particulates are rapidly exported from shallow bottoms, as in windy periods, the water quality of the entire Kattegat Sea is likely to be impaired.  相似文献   
166.
The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer''s disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.  相似文献   
167.
Summary Each second brain nerve consists of only one single fibre terminating at two different types of touch receptors in the oral region. The two nerves are the dendrites of two perikarya in the forebrain and are the master neurons for ciliary reversal in the stigmata, which is a two-neuron reflex. By axoaxonal synapses they control one motor neuron in the midbrain, i.e. the command neuron for ciliary reversal in both rings. This cell sends one axon branch in each third nerve to the cilia cells. In the left nerve this fibre is closely associated with a coarsely granulated accessory fibre, which apparently regulates the ciliary beat. The third nerves also contain one fibre each from another motor neuron in the hindbrain. These fibres make synaptic contacts at some specialized epidermal cells in the lateral trunk behind the ciliary rings. A few previously unknown nerves in the dorsal forebrain innervate epidermal cells. It is likely that the complicated epidermal motor innervation regulates the secretory activity of the oikoplasts or of the epidermal cells in constructing a new house, including the necessary complicated filters and food trapping mechanisms.  相似文献   
168.
Partially or fully intrinsically disordered proteins are widespread in eukaryotic proteomes and play important biological functions. With the recognition that well defined protein structure is not a fundamental requirement for function come novel challenges, such as assigning function to disordered regions. In their recent work, Babu and colleagues (Ravarani et al, 2018 ) took on this challenge by developing IDR‐Screen, a robust high‐throughput approach for identifying functions of disordered regions.  相似文献   
169.
The invasive fungal pathogen Cronartium ribicola infects and kills whitebark pine (Pinus albicaulis) throughout western North America. Whitebark pine has been proposed for listing under the Endangered Species Act in the USA, and the loss of this species is predicted to have severe impacts on ecosystem composition and function in high‐elevation forests. Numerous fungal endophytes live inside whitebark pine tissues and may influence the severity of C. ribicola infection, either directly by inhibition of pathogen growth or indirectly by the induction of chemical defensive pathways in the tree. Terpenes, a form of chemical defence in pine trees, can also influence disease. In this study, we characterized fungal endophyte communities in whitebark pine seedlings before and after experimental inoculation with C. ribicola, monitored disease progression and compared fungal community composition in susceptible vs. resistant seedlings in a common garden. We analysed the terpene composition of these same seedlings. Seed family identity or maternal genetics influenced both terpenes and endophyte communities. Terpene and endophyte composition correlated with disease severity, and terpene concentrations differed in resistant vs. susceptible seedlings. These results suggest that the resistance to C. ribicola observed in natural whitebark pine populations is caused by the combined effects of genetics, endophytes and terpenes within needle tissue, in which initial interactions between microbes and hosts take place. Tree genotype, terpene and microbiome combinations associated with healthy trees could help to predict or reduce disease severity and improve outcomes of future tree breeding programmes.  相似文献   
170.
The role of calcium signalling and specific intracellular calcium signalling pathways in regulating skeletal muscle tissue peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, hexokinase (HK)II and pyruvate dehydrogenase kinase (PDK)4 mRNA was examined. Cultured primary rat skeletal muscle cells were incubated for 6 h in caffeine or ionomycin. Because PGC-1alpha mRNA clearly showed greater induction with ionomycin, the latter was chosen for the main experiments, whereby cells were incubated for 6 h with either ionomycin alone or in combination with either cyclosporin A or KN-62. The PGC-1alpha mRNA level was increased (p<0.05) approximately six-fold and HKII mRNA content approximately two-fold by ionomycin relative to the corresponding controls, whereas the PDK4 mRNA content remained unaffected. Cyclosporin A abolished (p<0.05) and KN-62 reduced (p<0.1) the ionomycin-induced increase in PGC-1alpha mRNA. Electrical stimulation of in vitro incubated rat EDL muscle increased (p<0.05) PGC-1alpha mRNA by 2.2-fold after 4 h of recovery relative to a resting control, and this increase was absent when muscles were incubated with KN-62 or cyclosporin A. The present data strongly suggest that calcium signalling is involved in regulating the PGC-1alpha and HKII genes, but not PDK4. Both calcineurin and CaMK signalling seem to be involved in the calcium- and contraction-mediated PGC-1alpha up-regulation in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号