首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5759篇
  免费   426篇
  国内免费   367篇
  6552篇
  2024年   12篇
  2023年   67篇
  2022年   162篇
  2021年   290篇
  2020年   206篇
  2019年   232篇
  2018年   221篇
  2017年   189篇
  2016年   278篇
  2015年   362篇
  2014年   448篇
  2013年   455篇
  2012年   492篇
  2011年   439篇
  2010年   270篇
  2009年   232篇
  2008年   287篇
  2007年   242篇
  2006年   180篇
  2005年   131篇
  2004年   142篇
  2003年   125篇
  2002年   112篇
  2001年   98篇
  2000年   89篇
  1999年   92篇
  1998年   63篇
  1997年   61篇
  1996年   39篇
  1995年   51篇
  1994年   55篇
  1993年   53篇
  1992年   67篇
  1991年   48篇
  1990年   34篇
  1989年   29篇
  1988年   28篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有6552条查询结果,搜索用时 0 毫秒
101.
Hu  Yan-Yu  Wei  Hai-Wei  Zhang  Zhi-Wei  Hou  Shuang-Li  Yang  Jun-Jie  Wang  Jun-Feng    Xiao-Tao 《Plant and Soil》2020,453(1-2):503-513
Plant and Soil - Uncovering the importance of soil and plant characteristics in driving the legacy effects of nitrogen (N) deposition on plant community nutrient stoichiometry would improve our...  相似文献   
102.
Hou  Jinyan  Su  Pengfei  Wang  Dacheng  Chen  Xue  Zhao  Weiwei  Wu  Lifang 《Plant Cell, Tissue and Organ Culture》2020,142(1):143-156

Sapium sebiferum Roxb. is a widespread and economically important multipurpose tree due to its high value in ornamental, and biodiesel production as well as medicine. A highly efficient in vitro plant regeneration system through direct shoot organogenesis was established for the first time from leaves and petioles of S. sebiferum. The results showed that plant growth regulators (PGRs), mechanical damage, explant orientation, explant source, and developmental stage had a strong influence on the in vitro morphogenesis of S. sebiferum. For shoot organogenesis from leaves, the highest adventitious shoot induction rate (96.67%) with 25.67 shoots per explant was obtained when mechanically damaged leaves (the first three leaf explants at the top, leaf #1–3) were cultured with the abaxial surface placed down on Murashige and Skoog (MS) medium containing 0.5 mg L?1 thidiazuron (TDZ). For in vitro morphogenesis of petioles, the combination of 1-naphthylacetic acid (NAA) and 6-benzylainopurine (6-BA) played a key role in cell fate determination. All of the in vitro petioles produced adventitious shoots on MS medium containing 1.0 mg L?1 6-BA and 0.1 mg L?1 NAA, while they produced green calli on medium fortified with 0.5 mg L?1 6-BA and 1.0 mg L?1 NAA. The shoots were subcultured in medium fortified with 0.5 mg L?1 6-BA and 0.1 mg L?1 NAA for multiplication and elongation. The elongated shoots successfully rooted on half-strength MS (1/2 MS) medium fortified with 0.5 mg L?1 indole-butyric acid (IBA) and 0.25 mg L?1 indole-3-acetic acid (IAA), and the regenerated plantlets successfully acclimatized with a survival rate of 92.56% in the greenhouse. The genetic fidelity of in vitro regenerated plants was evaluated using inter simple sequence repeat molecular markers. The in vitro regenerated plants were found to be the true to their mother plant. This study will be beneficial for the large-scale propagation as well as the genetic improvement of S. sebiferum.

  相似文献   
103.
104.
巨噬细胞产生NO.和O_2~-自由基的分子机理   总被引:2,自引:0,他引:2  
建立了用顺磁共振(ESR)和化学发光技术测定巨噬细胞产生NO和氧自由基的方法.捕捉到了巨噬细胞受佛波酯刺激产生的NO.和O-2自由基.测定了在不同浓度L-精氨酸存在时佛波酯刺激后巨噬细胞产生的NO自由基.研究了巨噬细胞产生的NO和氧自由基的分子机理.结果表明巨噬细胞不仅产生氧自由基而且产生NO自由基.NADPH氧化酶产生氧自由基的部位位于巨噬细胞膜的外侧.NO合成酶活化产生NO自由基比NADPH氧化酶活化产生氧自由基晚几分钟.  相似文献   
105.
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate.  相似文献   
106.
Metabolic engineering of Saccharomyces cerevisiae for high-level production of aromatic chemicals has received increasing attention in recent years. Tyrosol production from glucose by S. cerevisiae is considered an environmentally sustainable and safe approach. However, the production of tyrosol and salidroside by engineered S. cerevisiae has been reported to be lower than 2 g/L to date. In this study, S. cerevisiae was engineered with a push-pull-restrain strategy to efficiently produce tyrosol and salidroside from glucose. The biosynthetic pathways of ethanol, phenylalanine, and tryptophan were restrained by disrupting PDC1, PHA2, and TRP3. Subsequently, tyrosol biosynthesis was enhanced with a metabolic pull strategy of introducing PcAAS and EcTyrAM53I/A354V. Moreover, a metabolic push strategy was implemented with the heterologous expression of phosphoketolase (Xfpk), and then erythrose 4-phosphate was synthesized simultaneously by two pathways, the Xfpk-based pathway and the pentose phosphate pathway, in S. cerevisiae. Furthermore, the heterologous expression of Xfpk alone in S. cerevisiae efficiently improved tyrosol production compared with the coexpression of Xfpk and phosphotransacetylase. Finally, the tyrosol yield increased by approximately 135-folds, compared with that of parent strain. The total amount of tyrosol and salidroside with glucose fed-batch fermentation was over 10 g/L and reached levels suitable for large-scale production.  相似文献   
107.
Histone deacetylase 4 (HDAC4) is a member of the HDACs family, its expression is closely related to the cell development. The cell is an independent living entity that undergoes proliferation, differentiation, senescence, apoptosis, and pathology, and each process has a strict and complex regulatory system. With deepening of its research, the expression of HDAC4 is critical in the life process. This review focuses on the posttranslational modification of HDAC4 in cell biology, providing an important target for future disease treatment.  相似文献   
108.
Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.  相似文献   
109.
110.
Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small-angle X-ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input-Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS-based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain-domain assembly. The source code and tool packages are available at https://github.com/jianlin-cheng/SAXSDom .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号