首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10490篇
  免费   836篇
  国内免费   727篇
  2024年   20篇
  2023年   139篇
  2022年   301篇
  2021年   592篇
  2020年   393篇
  2019年   454篇
  2018年   488篇
  2017年   372篇
  2016年   446篇
  2015年   655篇
  2014年   711篇
  2013年   807篇
  2012年   995篇
  2011年   875篇
  2010年   492篇
  2009年   425篇
  2008年   576篇
  2007年   480篇
  2006年   417篇
  2005年   351篇
  2004年   270篇
  2003年   250篇
  2002年   184篇
  2001年   172篇
  2000年   146篇
  1999年   152篇
  1998年   91篇
  1997年   94篇
  1996年   93篇
  1995年   77篇
  1994年   85篇
  1993年   64篇
  1992年   58篇
  1991年   74篇
  1990年   58篇
  1989年   42篇
  1988年   32篇
  1987年   17篇
  1986年   22篇
  1985年   18篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
Psoralea corylifolia (P corylifolia) has been popularly applied in traditional Chinese medicine decoction for treating osteoporosis and promoting fracture healing since centuries ago. However, the bioactive natural components remain unknown. In this study, applying comprehensive two‐dimensional cell membrane chromatographic/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS) system, neobavaisoflavone (NBIF), for the first time, was identified for the bioaffinity with RAW 264.7 cells membranes from the extracts of P corylifolia. Here, we revealed that NBIF inhibited RANKL‐mediated osteoclastogenesis in bone marrow monocytes (BMMCs) and RAW264.7 cells dose dependently at the early stage. Moreover, NBIF inhibited osteoclasts function demonstrated by actin ring formation assay and pit‐formation assay. With regard to the underlying molecular mechanism, co‐immunoprecipitation showed that both the interactions of RANK with TRAF6 and with c‐Src were disrupted. In addition, NBIF inhibited the phosphorylation of P50, P65, IκB in NF‐κB pathway, ERK, JNK, P38 in MAPKs pathway, AKT in Akt pathway, accompanied with a blockade of calcium oscillation and inactivation of nuclear translocation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1). In vivo, NBIF inhibited osteoclastogenesis, promoted osteogenesis and ameliorated bone loss in ovariectomized mice. In summary, P corylifolia‐derived NBIF inhibited RANKL‐mediated osteoclastogenesis by suppressing the recruitment of TRAF6 and c‐Src to RANK, inactivating NF‐κB, MAPKs, and Akt signalling pathways and inhibiting calcium oscillation and NFATc1 translocation. NBIF might serve as a promising candidate for the treatment of osteoclast‐associated osteopenic diseases.  相似文献   
152.
Anthocyanins (AC) from Coreopsis tinctoria possesses strong antioxidant properties, while the effects of AC on cells damage induced by reactive oxygen species (ROS) in diabetes mellitus diseases progression have not been reported. The present study was carried out to evaluate the protective property of AC against cellular oxidative stress with an experimental model, H2O2‐exposed MIN6 cells. AC could reverse the decrease of cell viability induced by H2O2 and efficiently suppressed cellular ROS production and cell apoptosis. In addition, Real‐time PCR and Western blot analyses indicated that AC could protect MIN6 cells against oxidative injury through increasing the translocation of Nrf2 into nuclear, decreasing the phosphorylation level of p38 and up‐regulating the protein expression of antioxidant enzyme (SOD1, SOD2 and CAT). Thus, this study provides evidence to support the beneficial effect of AC in inhibiting MIN6 cells from H2O2‐induced oxidative injury.  相似文献   
153.
Zhang  Fan  Li  Chunbo  Deng  Kui  Wang  Zhuozhong  Zhao  Weiwei  Yang  Kai  Yang  Chunyan  Rong  Zhiwei  Cao  Lei  Lu  Yaxin  Huang  Yue  Han  Peng  Li  Kang 《Metabolomics : Official journal of the Metabolomic Society》2020,16(3):1-6
Introduction

Untargeted metabolomics intends to objectively analyze a wide variety of compounds. Their diverse physicochemical properties make it difficult to choose an appropriate reconstitution solvent after sample evaporation without influencing the chromatography or hamper column sorbent integrity.

Objectives

The study aimed to identify the most appropriate reconstitution solvent for blood plasma samples in terms of feature recovery, four endogenous compounds, and one selected internal standard.

Methods

We investigated several reconstitution solvent mixtures containing acetonitrile and methanol to resolve human plasma extract and evaluated them concerning the peak areas of tryptophan-d5, glucose, creatinine, palmitic acid, and the phophatidylcholine PC(P-16:0/P-16:0), as well as the total feature count

Results

Results indicated that acetonitrile containing 30% methanol was best suited to match all tested criteria at least for human blood plasma samples.

Conclusion

Despite identifying the mixture of acetonitrile and methanol being suitable as solvent for human blood plasma extracts, we recommend to systematically test for an appropriate reconstitution solvent for each analyzed biomatrix.

  相似文献   
154.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons. A fundamental pathogenesis of ALS is the prolonged cell stress in neurons, which is caused by either accumulation of protein aggregates or reactive oxygen species. However, the mechanistic link between stress sensing and cell death is unsettled. Here, we identify that miR‐183‐5p, a neuron‐enriched miRNA, couples stress sensing and cell death programming in ALS. miR‐183‐5p is immediately induced by hydrogen peroxide, tunicamycin or TNF‐α in neurons. The overexpression of miR‐183‐5p increases neuron survival under stress conditions, whereas its knockdown causes neuron death. miR‐183‐5p coordinates apoptosis and necroptosis pathways by directly targeting PDCD4 and RIPK3, and thus protects neurons against cell death under stress conditions. The consistent reduction of miR‐183‐5p in ALS patients and mouse models enhances the notion that miR‐183‐5p is a central regulator of motor neuron survival under stress conditions. Our study supplements current understanding of the mechanistic link between cell stress and death/survival, and provides novel targets for clinical interventions of ALS.  相似文献   
155.
156.
157.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   
158.
Radiation protection on male testis is an important task for ionizing radiation-related workers or people who receive radiotherapy for tumours near the testicle. In recent years, Toll-like receptors (TLRs), especially TLR4, have been widely studied as a radiation protection target. In this study, we detected that a low-toxicity TLR4 agonist monophosphoryl lipid A (MPLA) produced obvious radiation protection effects on mice testis. We found that MPLA effectively alleviated testis structure damage and cell apoptosis induced by ionizing radiation (IR). However, as the expression abundance differs a lot in distinct cells and tissues, MPLA seemed not to directly activate TLR4 singling pathway in mice testis. Here, we demonstrated a brand new mechanism for MPLA producing radiation protection effects on testis. We observed a significant activation of TLR4 pathway in macrophages after MPLA stimulation and identified significant changes in macrophage-derived exosomes protein expression. We proved that after MPLA treatment, macrophage-derived exosomes played an important role in testis radiation protection, and specially, G-CSF and MIP-2 in exosomes are the core molecules in this protection effect.  相似文献   
159.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
160.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号