首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17878篇
  免费   1419篇
  国内免费   1593篇
  20890篇
  2024年   42篇
  2023年   228篇
  2022年   608篇
  2021年   1002篇
  2020年   660篇
  2019年   797篇
  2018年   761篇
  2017年   523篇
  2016年   747篇
  2015年   1124篇
  2014年   1331篇
  2013年   1386篇
  2012年   1664篇
  2011年   1473篇
  2010年   903篇
  2009年   818篇
  2008年   903篇
  2007年   801篇
  2006年   721篇
  2005年   671篇
  2004年   517篇
  2003年   475篇
  2002年   373篇
  2001年   297篇
  2000年   277篇
  1999年   271篇
  1998年   169篇
  1997年   158篇
  1996年   181篇
  1995年   135篇
  1994年   154篇
  1993年   98篇
  1992年   113篇
  1991年   108篇
  1990年   79篇
  1989年   72篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   38篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
81.
Sun S  Bao Z  Ma H  Zhang D  Zheng X 《Biochemistry》2007,46(22):6668-6673
Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.  相似文献   
82.
The 3' processing of most bacterial precursor tRNAs involves exonucleolytic trimming to yield a mature CCA end. This step is carried out by RNase T, a member of the large DEDD family of exonucleases. We report the crystal structures of RNase T from Escherichia coli and Pseudomonas aeruginosa, which show that this enzyme adopts an opposing dimeric arrangement, with the catalytic DEDD residues from one monomer closely juxtaposed with a large basic patch on the other monomer. This arrangement suggests that RNase T has to be dimeric for substrate specificity, and agrees very well with prior site-directed mutagenesis studies. The dimeric architecture of RNase T is very similar to the arrangement seen in oligoribonuclease, another bacterial DEDD family exoribonuclease. The catalytic residues in these two enzymes are organized very similarly to the catalytic domain of the third DEDD family exoribonuclease in E. coli, RNase D, which is monomeric.  相似文献   
83.
The carbohydrate of Gal-alpha1,3-Gal is thought to be the major antigenic epitope present on pig vascular endothelium. The peptides that mimic the binding of antigenic epitope (Gal-alpha1,3-Gal) to lectin BS-I-B4 were identified from screening a filamentous phage-displayed random library. A phage bearing the peptide NCVSPYWCEPLAPSARA has been identified to bind the lectin strongly. Melibiose was able to inhibit the binding of the human natural anti-alpha Gal antibody to the peptide competitively. Our experiments show that the peptide mimetic of Gal-alpha1,3-Gal is able to inhibit the agglutination of pig RBCs by human natural antibody or lectin BS-I-B4. The peptide inhibitor of human natural antibodies may prove useful in pig-to-human xenotransplantation.  相似文献   
84.

Background

Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method.

Results

We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end.

Conclusions

De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.  相似文献   
85.
To investigate the biological significance of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) involvement in oocyte maturation, we screened for proteins that bound to UCH-L1 in mouse ovaries, and we found that the prostate tumor overexpressed-1 (PTOV1) protein was able to bind to UCH-L1. PTOV1 is highly expressed in prostate cancers and considered as a potential marker for carcinogenesis and the progress of prostate cancer. It was reported that PTOV1 plays an important role in cell cycle regulation, but its role in mammalian oocyte development and meiosis is still unclear. In this paper, it was found that the expression levels of PTOV1 in mouse ovaries progressively increased from prepubescence to adulthood. And we found by immunohistochemistry that PTOV1 spreaded in both the cytoplasm and nuclei of oocytes during prepuberty, but in normal adult mouse oocytes, it concentrated not only in nuclei but also on the plasma membrane, though in some oocytes with abnormal shapes, PTOV1 did not display the typical distribution patterns. In granulosa cells, however, it was found to locate in the cytoplasm at all the selected ages. In postnatal mouse ovaries (28 days), estradiol treatment induced the adult-specific distribution pattern of PTOV1 in oocytes. In addition, UCH-L1 was shown to be associated with CDK1, which participated in the regulation of cell cycle and oocyte maturation. Therefore, we propose that the distribution changes of PTOV1 are age-dependent, and significant for mouse oocyte development and maturation. Moreover, the discovery that PTOV1 is associated with UCH-L1 in mouse oocytes supports the explanations for that UCH-L1 is involved in oocyte development and maturation, especially under the regulation of estrogen.  相似文献   
86.
Controversy exists concerning whether cattle and water buffalo sustain infections with cysts of distinct arrays of species in the genus Sarcocystis. In particular, morphologically similar parasites have been alternately ascribed to Sarcocystis cruzi or to Sarcocystis levinei, depending on their occurrence in cattle or water buffalo. We used light and transmission electron microscopy, genetic analysis, and experimental infections of definitive canine hosts to determine whether consistent differences could be identified from parasites derived from several natural infections of each host, examining several tissue types (esophagus, skeletal muscles, and heart). Cysts derived from cattle and water buffalo shared similar structure; variation among 18S rRNA sequences did not segregate consistently according to intermediate host type; parasites derived from cattle and water buffalo induced similar outcomes in the canine definitive host. One cattle specimen harbored unusually large (macroscopic) sarcocysts which nonetheless conformed to previously reported ultrastructural and genetic features of S. cruzi. Finding no consistent basis to differentiate between them, we conclude that the parasites infecting each host and tissue type correspond to S. cruzi. In our sample, no phylogenetically distinct taxon was sampled which might correspond to a distinct taxon previously described as S. levinei. Either that taxon was missed by our sampling effort, or it may represent a junior synonym to S. cruzi, which would then cycle between dogs and a broader range of intermediate bovine hosts than was previously considered.  相似文献   
87.
Spinach is a vegetable with a high oxalate concentration in its tissues. Oxalate efflux from spinach (Spinacia oleracea L. cv. Quanneng) roots was rapidly stimulated (within 30 min) by aluminium (Al) treatment. The efflux was constant within 6 h, but increased with increasing Al concentration. The efflux was confined to the root tip (0-5 mm), which showed a 5-fold greater efflux than the root zone distal to the tip (5-10 mm). Oxalate efflux could not be triggered by treatment with the trivalent cation lanthanum or by phosphorus deficiency, indicating that the efflux was specific to the Al treatment. All this evidence suggested that spinach possesses Al-resistance mechanisms. However, spinach was found to be as sensitive to Al toxicity as the Al-sensitive wheat line ES8, which had no Al-dependent organic acids efflux. The Al accumulated in the apical 5 mm of the roots of spinach which was also similar to that in the Al-sensitive wheat after 24 h treatment with 50 microM AlCl(3), indicating a non-exclusion mechanism. In addition, root elongation in spinach was significantly inhibited at pH 4.5, compared with that at pH 6.5. Based on this evidence, it is concluded that the sensitivity to acid stress in spinach could mask the potential role for oxalate to protect the plant roots from Al toxicity.  相似文献   
88.
Liu J  Deng Y  Zheng Q  Cheng CS  Kallenbach NR  Lu M 《Biochemistry》2006,45(51):15224-15231
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between alpha helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of alpha-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete alpha-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 A resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.  相似文献   
89.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   
90.
Inositol monophosphatase is a potential drug target for developing lithium-mimetic agents for the treatment of bipolar disorder. Enzyme-based assays have been traditionally used in compound screening to identify inositol monophosphatase inhibitors. A cell-based screening assay in which the compound needs to cross the cell membrane before reaching the target enzyme offers a new approach for discovering novel structure leads of the inositol monophosphatase inhibitor. The authors have recently reported a high-throughput measurement of G-protein-coupled receptor activation by determining inositol phosphates in cell extracts using scintillation proximity assay. This cell-based assay has been modified to allow the determination of inositol monophosphatase activity instead of G-protein-coupled receptors. The enzyme is also assayed in its native form and physiological environment. The authors have applied this cell-based assay to the high-throughput screening of a large compound collection and identified several novel inositol monophosphatase inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号