首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11396篇
  免费   866篇
  国内免费   548篇
  12810篇
  2024年   22篇
  2023年   115篇
  2022年   278篇
  2021年   443篇
  2020年   328篇
  2019年   400篇
  2018年   446篇
  2017年   354篇
  2016年   481篇
  2015年   711篇
  2014年   755篇
  2013年   905篇
  2012年   1068篇
  2011年   930篇
  2010年   546篇
  2009年   511篇
  2008年   595篇
  2007年   519篇
  2006年   442篇
  2005年   386篇
  2004年   356篇
  2003年   294篇
  2002年   253篇
  2001年   201篇
  2000年   187篇
  1999年   170篇
  1998年   86篇
  1997年   97篇
  1996年   92篇
  1995年   76篇
  1994年   72篇
  1993年   72篇
  1992年   89篇
  1991年   87篇
  1990年   66篇
  1989年   53篇
  1988年   47篇
  1987年   48篇
  1986年   36篇
  1985年   39篇
  1984年   22篇
  1983年   21篇
  1982年   12篇
  1981年   12篇
  1979年   11篇
  1978年   15篇
  1975年   7篇
  1974年   7篇
  1972年   12篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A series of novel 12N-substituted matrinane derivatives were synthesized and evaluated for their activities against coxsackievirus type B3 (CVB3) taking compound 1 as the lead. SAR analysis indicated that the introduction of a suitable heteroaromatic ring on the 12N-atom might be beneficial for the activity. Among them, compound 8a exhibited the highest potency against all CVB serotypes as well as CVA16 with IC50 values ranging from 2.02 μM to 7.41 μM, indicating a broad-spectrum anti-coxsackieviruse effect. Furthermore, compound 8a demonstrated a good safety profile in vivo. Thus, we consider 12N-substituted matrinanes to be a promising family of anti-coxsackievirus agents, and compound 8a to be a promising drug candidate in the treatment of various diseases related to coxsackievirus infection.  相似文献   
992.
993.
Wakabayashi H  Su YC  Ahmad SS  Walsh PN  Fay PJ 《Biochemistry》2005,44(30):10298-10304
We recently identified an acidic-rich segment in the A1 domain of factor VIII (residues 110-126) that functions in the coordination of Ca(2+), an ion necessary for cofactor activity [Wakabayashi et al. (2004) J. Biol. Chem. 279, 12677-12684]. Mutagenesis studies showed that replacement of residue Glu113 with Ala (E113A) yielded a factor VIII point mutant possessing increased specific activity as determined by a one-stage clotting assay. Mutagenesis at this site suggested that substitution with relatively small, nonpolar residues was well tolerated, whereas replacement with a number of polar or charged residues appeared detrimental to activity. Ala substitution resulted in the greatest enhancement, yielding an approximately 2-fold increased specific activity. Time course experiments following reaction with thrombin revealed similar rates of activation and inactivation of E113A as observed for the wild type. Results from factor Xa generation assays showed minimal differences in kinetic parameters and factor IXa affinity for E113A and wild-type factor VIIIa when run in the presence of synthetic phospholipid vesicles, whereas factor VIIIa E113A displayed an approximately 4-fold greater affinity for factor IXa compared with factor VIIIa wild type in reactions run on the platelet membrane surface. This latter effect may be attributed, in part, to a 2-fold increased affinity of factor VIIIa E113A for the platelet membrane. Considering that low levels of factors VIIIa and IXa are generated during clotting in plasma, the increased cofactor specific activity observed for E113A factor VIII may result from its enhanced affinity for factor IXa on the physiological membrane.  相似文献   
994.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.  相似文献   
995.
996.
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF‐β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid‐cleaved GDF8 pro‐complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro‐complexes reveals a V‐shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring‐like, cross‐armed conformation of latent TGF‐β1. Surprisingly, Tolloid‐cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen–deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain–growth factor dissociation, increased exchange in regions that correspond in pro‐TGF‐β1 to the α1‐helix, latency lasso, and β1‐strand in the prodomain and to the β6′‐ and β7′‐strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain–growth factor interfaces and primes the growth factor for release from the prodomain.  相似文献   
997.
998.
The marine alginate lyase from Streptomyces sp. ALG-5, which specifically degrades poly-G block of alginate, was functionally expressed as a His-tagged form with an Escherichia coli expression system. The recombinant alginate lyase expressed with pColdI at 15 °C exhibited the highest alginate-degrading activity. The recombinant alginate lyase was efficiently immobilized onto two types of magnetic nanoparticles, superparamagnetic iron oxide nanoparticle, and hybrid magnetic silica nanoparticle, based on the affinity between His-tag and Ni2+ that displayed on the surfaces of nanoparticles. An alginate oligosaccharide mixture consisting of dimer and trimer was prepared by the immobilized alginate lyase. The immobilized enzymes were re-used repeatedly more than 10 times after magnetic separation.  相似文献   
999.
Lung fibrosis is an ultimate consequence of pulmonary oxygen toxicity in human and animal models. Excessive production and deposition of extracellular matrix proteins, e.g., collagen-I, is the most important feature of pulmonary fibrosis in hyperoxia-induced lung injury. In this study, we investigated the roles of RhoA and reactive oxygen species (ROS) in collagen-I synthesis in hyperoxic lung fibroblasts and in a mouse model of oxygen toxicity. Exposure of human lung fibroblasts to hyperoxia resulted in RhoA activation and an increase in collagen-I synthesis and cell proliferation. Inhibition of RhoA by C3 transferase CT-04, dominant-negative RhoA mutant T19N, or RhoA siRNA prevented hyperoxia-induced collagen-I synthesis. The constitutively active RhoA mutant Q63L mimicked the effect of hyperoxia on collagen-I expression. Moreover, the Rho kinase inhibitor Y27632 inhibited collagen-I synthesis in hyperoxic lung fibroblasts and fibrosis in mouse lungs after oxygen toxicity. Furthermore, the ROS scavenger tiron attenuated hyperoxia-induced increases in RhoA activation and collagen-I synthesis in lung fibroblasts and mouse lungs after oxygen toxicity. More importantly, we found that hyperoxia induced separation of guanine nucleotide dissociation inhibitor (GDI) from RhoA in lung fibroblasts and mouse lungs. Further, tiron prevented the separation of GDI from RhoA in hyperoxic lung fibroblasts and mouse lungs with oxygen toxicity. Together, these results indicate that ROS-induced separation of GDI from RhoA leads to RhoA activation with oxygen toxicity. ROS-dependent RhoA activation is responsible for the increase in collagen-I synthesis in hyperoxic lung fibroblasts and mouse lungs.  相似文献   
1000.
The product of the SSeCKS/GRAVIN/AKAP12 gene ("SSeCKS") is a major protein kinase (PK) C substrate that exhibits tumor- and metastasis-suppressing activity likely through its ability to scaffold multiple signaling mediators such as PKC, PKA, cyclins, calmodulin, and Src. Although SSeCKS and PKCα bind phosphatidylserine, we demonstrate that phosphatidylserine-independent binding of PKC by SSeCKS is facilitated by two homologous SSeCKS motifs, EG(I/V)(T/S)XWXSFK(K/R)(M/L)VTP(K/R)K(K/R)X(K/R)XXXEXXXE(E/D) (amino acids 592-620 and 741-769). SSeCKS binding to PKCα decreased kinase activity and was dependent on the two PKC-binding motifs. SSeCKS scaffolding of PKC was increased in confluent cell cultures, correlating with significantly increased SSeCKS protein levels and decreased PKCα activity, suggesting a role for SSeCKS in suppressing PKC activation during contact inhibition. SSeCKS-null mouse embryo fibroblasts displayed increased relative basal and phorbol ester (phorbol 12-myristate 13-acetate)-induced PKC activity but were defective in phorbol 12-myristate 13-acetate-induced actin cytoskeletal reorganization and cell shape change; these responses could be rescued by the forced expression of full-length SSeCKS but not by an SSeCKS variant deleted of its PKC-binding domains. Finally, the PKC binding sites in SSeCKS were required to restore cell rounding and/or decreased apoptosis in phorbol ester-treated LNCaP, LNCaP-C4-2, and MAT-LyLu prostate cancer cells. Thus, PKC-mediated remodeling of the actin cytoskeleton is likely regulated by the ability of SSeCKS to control PKC signaling and activity through a direct scaffolding function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号