In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed. 相似文献
Different pH control agents (NaOH/H2SO4—SodSulp, NaOH/CH3COOH—SodAcet, NH4OH/CH3COOH—AmmoAcet and NH4OH/H2SO4—AmmoSulp) were used to investigate their effects on growth, enzyme production (alkaline protease and amylase), and entomotoxicity
of Bacillus thuringiensis var. kurstaki HD-1 (Btk) against eastern spruce budworm larvae (Choristoneura fumiferana) using starch industry wastewater (SIW) as a raw material in a 15-l fermentor. AmmoSulp and SodSulp were found to be the
best pH control agents for alkaline protease and amylase production, respectively; whereas, the fermented broth obtained by
using SodAcet as pH control agents recorded the highest delta-endotoxin production of 1043.0 mg/l and entomotoxicity value
18.4 × 109 SBU/l. Entomotoxicity of re-suspended centrifuged pellet in one-tenth of original volume in case of SodAcet as pH control
agents was 26.7 × 109 SBU/l and was the highest value compared to three other pH control agents. 相似文献
This study investigated the biomass production process from the laboratory to the pilot scale in order to use the nutrient-rich biomass of the diatom Thalassiosira weissflogii as live feed for white-leg shrimp (Litopenaeus vannamei) at larval stages (zoeal, mysis, and postlarval) and in commercial production in hatcheries in Vietnam. Our results showed that T. weissflogii was successfully cultured in 1–2 L Erlenmeyer flasks, 0.2–3.5 m3 composite tanks, and 6.5 m3 tubular photobioreactors, with the highest cell density of 1.6 × 106 cells mL?1 reached after 6 days of culture. Under optimal culture conditions, the protein, lipid, and carbohydrate contents in this algal biomass were 13.2%, 20.0%, and 10.0% of dry cell weight, respectively. The fatty acid composition contains high amount of palmitic acid (C16:0, 43.11% of total fatty acid), and polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, C20:5ω-3), approximated 16.5% of total fatty acid. In a 50 L larval rearing tank, at the optimal stocking density of 125 nauplii L?1, the survival percentage (75.55%), the total body length (from 5.376 ± 0.007 to 10.860 ± 0.030 mm), and weight (at from PL1 to PL12 stages) (from 0.145 ± 0.002 to 1.158 ± 0.005 g) of the white-leg shrimp larvae reached the highest values but the metamorphosis time (234 h) was shortest compared with the other stocking densities. Further, adding living T. weissflogii biomass to the diet of white-leg shrimp larvae at the nauplii 6 stage led to an increase in the body length, weight, and survival percentage of white-leg shrimp larvae of 21.17%, 35.7%, and 33% higher compared with those of larvae fed the control diet (without the addition of T. weissflogii), respectively. At the same time, the metamorphosis time of larvae (from Z1 to PL1) decreased by 4 h compared to the control group. In intensive ponds (area of 6400 m2 pond?1), using seed stocks at the postlarvae 12 stage that had been fed T. weissflogii, the final weight, yield, and survival percentage of the shrimp were increased by 7.3%, 14.2%, and 16.3%, respectively, compared with those of the control group. There were no statistically significant differences in the protein and carbohydrate contents in the shrimp flesh among the experimental and control group (p > 0.05). The lipid, omega-3, omega-6, and omega-9 fatty acid contents of shrimp flesh in experiment formula (per 100 g shrimp) were 1.21 g, 72.9 mg, 114 mg, and 86.1 mg, 11%, 29%, 21.6%, and 17.7% higher than that those in control, respectively. The obtained results show the great potential of using T. weissflogii as live feed on white-leg shrimp farms in Vietnam.
The objective of this study was to determine the effect of passive myocardium on the coronary arteries under distension and compression. To simulate distension and compression, we placed a diastolic-arrested heart in a Lucite box, where both the intravascular pressure and external (box) pressure were varied independently and expressed as a pressure difference (DeltaP = intravascular pressure - box pressure). The DeltaP-cross-sectional area relationship of the first several generations of porcine coronary arteries and the DeltaP-volume relationship of the coronary arterial tree (vessels >0.5 mm in diameter) were determined using a video densitometric technique in the range of +150 to -150 mmHg. The vasodilated left anterior descending (LAD) coronary artery of six KCl-arrested hearts were perfused with iodine and 3% Cab-O-Sil. The intravascular pressure was varied in a triangular pattern, whereas the absolute cross-sectional area of each vessel and the total arterial volume were calculated using video densitometry under different box pressures (0, 50, 100, and 150 mmHg). In the range of positive DeltaP, we found that the compliance of the proximal LAD artery in situ (4.85 +/- 3.8 x 10-3 mm2/mmHg) is smaller than that of the same artery in vitro (16.5 +/- 6 x 10-3 mm2/mmHg; P = 0.009). Hence, the myocardium restricts the compliance of the epicardial artery under distension. In the negative DeltaP range, the LAD artery does not collapse, whereas the same vessel readily collapses when tested in vitro. Hence, we conclude that myocardial tethering prevents collapse of large blood vessel under compression. 相似文献
Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression. 相似文献
Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF proteins in that three peripherin isoforms are generated by alternative splicing. Here, the properties of the peripherin splice variants Per 58, Per 56, and Per 61 have been investigated in transfected cell lines, in primary motor neurons, and in transgenic mice overexpressing peripherin or overexpressing SOD1G37R. Of the three isoforms, Per 61 proved to be distinctly neurotoxic, being assembly incompetent and inducing degeneration of motor neurons in culture. Using isoform-specific antibodies, Per 61 expression was detected in motor neurons of SOD1G37R transgenic mice but not of control or peripherin transgenic mice. The Per 61 antibody also selectively labeled motor neurons and axonal spheroids in two cases of familial ALS and immunoprecipitated a higher molecular mass peripherin species from disease tissue. This evidence suggests that expression of neurotoxic splice variants of peripherin may contribute to the neurodegenerative mechanism in ALS. 相似文献
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl− and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways. 相似文献
Long non-coding RNAs (lncRNAs) have previously been implicated in human disease states, especially cancer. Although the aberrant expression of lncRNAs has been observed in cancer, the biological functions and molecular mechanisms underlying aberrantly expressed lncRNAs in hepatocellular carcinoma (HCC) have not been widely established. In the present study, we investigated a novel lncRNA, termed URHC (up-regulated in hepatocellular carcinoma), and evaluated its role in the progression of HCC. Expression profiling using a lncRNA microarray revealed that URHC was highly expressed in 3 HCC cell lines compared to normal hepatocytes. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses confirmed that URHC expression was increased in hepatoma cells and HCC tissues. Moreover, using qRT-PCR, we confirmed that URHC expression was up-regulated in 30 HCC cases (57.7%) and that its higher expression was correlated with poor overall survival. We further demonstrated that URHC inhibition reduced cell proliferation and promoted apoptosis. We hypothesize that URHC may function by regulating the sterile alpha motif and leucine zipper containing kinase AZK (ZAK) gene, which is located near URHC on the same chromosome. We found that ZAK mRNA levels were down-regulated in HCC tissues and the expression levels of ZAK were negatively correlated with those of URHC in the above HCC tissues. Next, we confirmed that URHC down-regulated ZAK, which is involved in URHC-mediated cell proliferation and apoptosis. Furthermore, ERK/MAPK pathway inactivation partially accounted for URHC-ZAK-induced cell growth and apoptosis. Thus, we concluded that high URHC expression can promote cell proliferation and inhibit apoptosis by repressing ZAK expression through inactivation of the ERK/MAPK pathway. These findings may provide a novel mechanism and therapeutic targets for the treatment of HCC. 相似文献