首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1214篇
  免费   149篇
  国内免费   99篇
  1462篇
  2024年   4篇
  2023年   18篇
  2022年   40篇
  2021年   48篇
  2020年   36篇
  2019年   49篇
  2018年   51篇
  2017年   50篇
  2016年   57篇
  2015年   74篇
  2014年   92篇
  2013年   79篇
  2012年   126篇
  2011年   94篇
  2010年   64篇
  2009年   55篇
  2008年   52篇
  2007年   37篇
  2006年   53篇
  2005年   43篇
  2004年   53篇
  2003年   56篇
  2002年   41篇
  2001年   35篇
  2000年   25篇
  1999年   25篇
  1998年   14篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   15篇
  1991年   7篇
  1990年   7篇
  1989年   1篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有1462条查询结果,搜索用时 15 毫秒
71.
Drews O  Zong C  Ping P 《Proteomics》2007,7(7):1047-1058
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.  相似文献   
72.
Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.  相似文献   
73.
74.
Pollination networks are usually constructed and assessed by direct field observations which commonly assume that all flower visitors are true pollinators. However, this assumption is often invalid and the use of data based on mere visitors to flowers may lead to a misunderstanding of intrinsic pollination networks. Here, using a large dataset by both sampling floral visitors and analyzing their pollen loads, we constructed 32 networks pairs (visitation versus pollen transport) across one flowering season at four elevation sites in the Himalaya–Hengduan Mountains region. Pollen analysis was conducted to determine which flower visitors acted as potential pollinators (pollen vectors) or as cheaters (those not carrying pollen of the visited plants). We tested whether there were topological differences between visitation and pollen transport networks and whether different taxonomic groups of insect visitors differed in their ability to carry pollen of the visited plants. Our results indicated that there was a significantly higher degree of specialization at both the network and species levels in the pollen transport networks in contrast to the visitation networks. Modularity was lower but nestedness was higher in the visitation networks compared to the pollen transport networks. All the cheaters were identified as peripheral species and most of them contributed positively to the nested structure. This may explain in part the differences in modularity and nestedness between the two network types. Bees carried the highest proportion of pollen of the visited plants. This was followed by Coleoptera, other Hymenoptera and Diptera. Lepidoptera carried the lowest proportion of pollen of the visited plants. Our study shows that the construction of pollen transport networks could provide a more in‐depth understanding of plant–pollinator interactions. Moreover, it suggests that detecting and removing cheater interactions when studying the topology of other mutualistic networks might be also important.  相似文献   
75.
Shao  Yizhi  Zhao  Hongjing  Wang  Yu  Liu  Juanjuan  Zong  Hui  Xing  Mingwei 《Biological trace element research》2019,188(2):468-477
Biological Trace Element Research - The aim of this study is to investigate whether copper (Cu) could induce testicular poisoning and influence the mitochondrial dynamics, apoptosis, and autophagy...  相似文献   
76.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   
77.
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.  相似文献   
78.
79.
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号