首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   18篇
  国内免费   1篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   10篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   7篇
  2013年   19篇
  2012年   25篇
  2011年   14篇
  2010年   17篇
  2009年   12篇
  2008年   18篇
  2007年   16篇
  2006年   10篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有246条查询结果,搜索用时 55 毫秒
21.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   
22.
It has been suggested that ZIP7 (Ke4, Slc39a7) belongs to the ZIP family of zinc transporters. Transient expression of the V5-tagged human ZIP7 fusion protein in CHO cells led to elevation of the cytoplasmic zinc level. However, the precise function of ZIP7 in cellular zinc homeostasis is not clear. Here we report that the ZIP7 gene is ubiquitously expressed in human and mouse tissues. The endogenous ZIP7 was associated with the Golgi apparatus and was capable of transporting zinc from the Golgi apparatus into the cytoplasm of the cell. Moreover, by using the yeast mutant strain Deltazrt3 that was defective in release of stored zinc from vacuoles, we found that ZIP7 was able to decrease the level of accumulated zinc and in the meantime to increase the nuclear/cytoplasmic labile zinc level in the ZIP7-expressing zrt3 mutant. We showed that the protein expression of ZIP7 was repressed under zinc-rich condition, whereas there were no effects of zinc on ZIP7 gene expression and intracellular localization. Neither did zinc deficiency affect the intracellular distribution of ZIP7 in mammalian cells. Our study demonstrates that ZIP7 is a functional zinc transporter that acts by transporting zinc from the Golgi apparatus to the cytoplasm of the cell.  相似文献   
23.
Comparing the 3D structures of proteins is an important but computationally hard problem in bioinformatics. In this paper, we propose studying the problem when much less information or assumptions are available. We model the structural alignment of proteins as a combinatorial problem. In the problem, each protein is simply a set of points in the 3D space, without sequence order information, and the objective is to discover all large enough alignments for any subset of the input. We propose a data-mining approach for this problem. We first perform geometric hashing of the structures such that points with similar locations in the 3D space are hashed into the same bin in the hash table. The novelty is that we consider each bin as a coincidence group and mine for frequent patterns, which is a well-studied technique in data mining. We observe that these frequent patterns are already potentially large alignments. Then a simple heuristic is used to extend the alignments if possible. We implemented the algorithm and tested it using real protein structures. The results were compared with existing tools. They showed that the algorithm is capable of finding conserved substructures that do not preserve sequence order, especially those existing in protein interfaces. The algorithm can also identify conserved substructures of functionally similar structures within a mixture with dissimilar ones. The running time of the program was smaller or comparable to that of the existing tools.  相似文献   
24.
Semaphorins and plexins are implicated in the progression of various types of cancer, although the molecular basis has not been fully elucidated. Here, we report the expression of plexin-B3 in glioma cells, which upon stimulation by its ligand Sema5A results in significant inhibition of cell migration and invasion. A search for the underlying mechanism revealed direct interaction of plexin-B3 with RhoGDP dissociation inhibitor α (RhoGDIα), a negative regulator of RhoGTPases that blocks guanine nucleotide exchange and sequesters them away from the plasma membrane. Glioma cells challenged with Sema5A indeed showed a marked reduction in Rac1-GTP levels by 60%, with a concomitant disruption of lamellipodia. The inactivation of Rac1 was corroborated to contribute to the impediment of glioma cell invasion by Sema5A, as supported by the abolishment of effect upon forced expression of a constitutively active Rac1 mutant. Furthermore, silencing the endogenous expression of RhoGDIα in glioma cells was found to be sufficient in abrogating the down-regulation of Rac1-GTP and the ensuing suppression of glioma cell motility induced by Sema5A. Mechanistically, we provide evidence that Sema5A promotes Rac1 recruitment to RhoGDIα and reduces its membrane localization in a plexin-B3-dependent manner, thereby preventing Rac1 activation. This represents a novel signaling of semaphorin and plexin in the control of cell motility by indirect inactivation of Rac1 through RhoGDIα.  相似文献   
25.
The human cathelicidin LL‐37, a pleiotropic host defense peptide, is down‐regulated in gastric adenocarcinomas. We therefore investigated whether this peptide suppresses gastric cancer growth. LL‐37 lowered gastric cancer cell proliferation and delayed G1‐S transition in vitro and inhibits the growth of gastric cancer xenograft in vivo. In this connection, LL‐37 increased the tumor‐suppressing bone morphogenetic protein (BMP) signaling, manifested as an increase in BMP4 expression and the subsequent Smad1/5 phosphorylation and the induction of p21Waf1/Cip1. The anti‐mitogenic effect, Smad1/5 phosphorylation, and p21Waf1/Cip1 up‐regulation induced by LL‐37 were reversed by the knockdown of BMP receptor II. The activation of BMP signaling was paralleled by the inhibition of chymotrypsin‐like and caspase‐like activity of proteasome. In this regard, proteasome inhibitor MG‐132 mimicked the effect of LL‐37 by up‐regulating BMP4 expression and Smad1/5 phosphorylation. Further analysis of clinical samples revealed that LL‐37 and p21Waf1/Cip1 mRNA expressions were both down‐regulated in gastric cancer tissues and their expressions were positively correlated. Collectively, we describe for the first time that LL‐37 inhibits gastric cancer cell proliferation through activation of BMP signaling via a proteasome‐dependent mechanism. This unique biological activity may open up novel therapeutic avenue for the treatment of gastric cancer. J. Cell. Physiol. 223: 178–186, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
26.
27.
Given a distance matrix M that specifies the pairwise evolutionary distances between n species, the phylogenetic tree reconstruction problem asks for an edge-weighted phylogenetic tree that satisfies M, if one exists. We study some extensions of this problem to rooted phylogenetic networks. Our main result is an O(n(2) log n)-time algorithm for determining whether there is an ultrametric galled network that satisfies M, and if so, constructing one. In fact, if such an ultrametric galled network exists, our algorithm is guaranteed to construct one containing the minimum possible number of nodes with more than one parent (hybrid nodes). We also prove that finding a largest possible submatrix M' of M such that there exists an ultrametric galled network that satisfies M' is NP-hard. Furthermore, we show that given an incomplete distance matrix (i.e. where some matrix entries are missing), it is also NP-hard to determine whether there exists an ultrametric galled network which satisfies it.  相似文献   
28.
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.  相似文献   
29.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   
30.
Although HCO3 is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3 acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3 on preimplantation embryo development can be suppressed by interfering the function of a HCO3-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3 or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3 removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3 to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号