首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   22篇
  125篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
51.
52.
In order to exploit human blood as a source of protein disease biomarkers, robust analytical methods are needed to overcome the inherent molecular complexity of this bio-fluid. We present the coupling of label-free SAX chromatography and IMAC to a data-independent nanoLC–MS/MS (nanoLC–MSE) platform for analysis of blood plasma and serum proteins. The methods were evaluated using protein standards added at different concentrations to two groups of samples. The results demonstrate that both techniques enable accurate protein quantitation using low sample volumes and a minimal number of fractions. Combining both methods, 883 unique proteins were identified, of which 423 proteins showed high reproducibility. The two approaches resulted in identification of unique molecular signatures with an overlap of approximately 30%, thus providing complimentary information on sub-proteomes. These methods are potentially useful for systems biology, biomarker discovery, and investigation of phosphoproteins in blood.  相似文献   
53.
Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses.  相似文献   
54.
Imatinib (IM) is the current first line treatment for chronic myeloid leukemia (CML). However, the disease will progress in the majority of patients pausing IM. IFN-α may intensify the response and increase the percentage of patients maintaining remission after IM cessation. Eleven patients with stable (≥ 2 years) complete cytogenetic responses (CCyR) on IM therapy were recruited to the study. They were administered Peg-IFN-α for 9 months before and for 3 months following IM discontinuation. During the 12 months of Peg-IFN-α therapy the remission status improved in five (45%) of the patients. Six (55%) of the patients experienced cytogenetic relapses at a median period of 8 months (range 2-33) after IM withdrawal. All six patients regained CCyR following IM restart. With a median follow up of 47 months (range 35-50), five (45%) out of the 11 studied patients maintain cytogenetic response off IM therapy. The role of Peg-IFN-α in patients pausing IM is to be further evaluated.  相似文献   
55.
Stimulation of Escherichia coli with acetate elevates the acetylation level of the chemotaxis response regulator CheY. This elevation, in an unknown mechanism, activates CheY to generate clockwise rotation. Here, using quantitative selective reaction monitoring mass spectrometry and high‐resolution targeted mass spectrometry, we identified K91 and K109 as the major sites whose acetylation level in vivo increases in response to acetate. Employing single and multiple lysine replacements in CheY, we found that K91 and K109 are also the sites mainly responsible for acetate‐dependent clockwise generation. Furthermore, we showed that clockwise rotation is repressed when residue K91 is nonmodified, as evidenced by an increased ability of CheY to generate clockwise rotation when K91 was acetylated or replaced by specific amino acids. Using molecular dynamics simulations, we show that K91 repression is manifested in the conformational dynamics of the β4α4 loop, shifted toward an active state upon mutation. Removal of β4α4 loop repression may represent a general activation mechanism in CheY, pertaining also to the canonical phosphorylation activation pathway as suggested by crystal structures of active and inactive CheY from Thermotoga maritima. By way of elimination, we further suggest that K109 acetylation is actively involved in generating clockwise rotation.  相似文献   
56.
BACKGROUND: Organ fragments can be cultured for weeks in vitro if they are prepared of microscopic thickness and if the basic organ structure is preserved. Such organ fragments, which we termed micro-organs (MOs), express in culture endogenous tissue-specific gene products. We have exploited this methodology to engineer MOs ex vivo by gene transfer. METHODS: MOs prepared from spleen, lung, colon and skin were infected using: herpes simplex type-1, adeno virus, vaccinia virus and murine leukemia virus (MuLV), carrying the reporter gene beta-galactosidase. RESULTS: All four viral vectors infected MOs in culture, with adeno infection giving significantly higher values. After optimization, high levels of expression (> 15% positive cells), comparable to those obtained with the adeno construct, were also obtained using the MuLV construct both in vitro and after implantation into syngeneic hosts. After implantation, the engineered tissue was found to remain localized, become vascularized, and to express the transduced gene for several months. CONCLUSIONS: The system can be used to study interactions between viruses and tissues both ex vivo and in vivo. Furthermore, the approach proposes a novel platform for ex vivo gene therapy. Such engineered structures could be used as autologous biological pumps for continuous secretion in vivo of gene products of clinical importance.  相似文献   
57.
Little is known about the molecular factors that are altered in remitting bipolar disorder (BD) patients. We carried out proteome profiling of peripheral blood mononuclear cells (PBMCs) and serum from BD patients who were not experiencing mania or major depression (euthymia) compared to matched healthy controls using liquid chromatography–mass spectrometry (LC‐MSE) and Multi‐Analyte Profiling (Human Map®) platforms. This resulted in the identification of approximately 60 differentially expressed molecules involved predominantly in cell death/survival pathways. In PBMCs, this was manifested in cytoskeletal and stress response‐associated proteins, whereas most serum analytes were associated with the inflammatory response. The predicted effect of serum analytes on physiological systems was tested by treating PBMCs with serum obtained from the same patients, resulting in reduced cellular survival. These preliminary results suggest that BD patients carry a peripheral fingerprint that has detrimental effects on cell function and that could be used to distinguish BD patients from healthy controls despite being in a remission phase. It is hoped that additional studies of BD patients in the manic and depressed stages could lead to the identification of a molecular fingerprint that could be used for predicting episodic switching and for guiding treatment strategies.  相似文献   
58.
In this study, we performed the first high‐throughput and comprehensive proteomic profiling of the rat hippocampal proteome. Using a combination of 2‐D LC‐MS and data analysis with the Rosetta Elucidator® system, we identified 1340 unique proteins. Functional classification showed that most of these were associated with synaptic function and comprised a high proportion of phosphorylated proteins and analytically challenging classes of membrane proteins such as ion channel receptor subunits.  相似文献   
59.
Many biological systems consist of multiple cells that interact by secretion and binding of diffusing molecules, thus coordinating responses across cells. Techniques for simulating systems coupling extracellular and intracellular processes are very limited. Here we present an efficient method to stochastically simulate diffusion processes, which at the same time allows synchronization between internal and external cellular conditions through a modification of Gillespie's chemical reaction algorithm. Individual cells are simulated as independent agents, and each cell accurately reacts to changes in its local environment affected by diffusing molecules. Such a simulation provides time-scale separation between the intra-cellular and extra-cellular processes. We use our methodology to study how human monocyte-derived dendritic cells alert neighboring cells about viral infection using diffusing interferon molecules. A subpopulation of the infected cells reacts early to the infection and secretes interferon into the extra-cellular medium, which helps activate other cells. Findings predicted by our simulation and confirmed by experimental results suggest that the early activation is largely independent of the fraction of infected cells and is thus both sensitive and robust. The concordance with the experimental results supports the value of our method for overcoming the challenges of accurately simulating multiscale biological signaling systems.  相似文献   
60.
Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator--cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator--cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion-mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号