首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   22篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
121.
122.
The time course of reactivation of the calcium current in isolated single cardiac cells is complex. The rising phase is sigmoid and there is an overshoot. Catecholamines increase the initial rate of reactivation but reduce or abolish the overshoot. This combination of effects results in a 'crossover', so that the net effect of adrenaline depends on the pulse interval used. Acetylcholine not only reduces the current amplitude, it also substantially slows recovery. At short intervals the effect of acetylcholine is therefore very large. Agents that increase intracellular cyclic AMP levels affect the amplitude of the current but do not have a large effect on the reactivation time course. It is suggested that the autonomic transmitters exert their effects by controlling the local calcium concentration near the inner surface of the channels. This is supported by the fact that there are natural variations in reactivation time course between different cells and that these are correlated with their calcium loading, as judged by other electrophysiological criteria, such as the speed of calcium current inactivation and the presence of the calcium-dependent slow inward current.  相似文献   
123.
124.
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.  相似文献   
125.
Cardiac performance was studied in the isolated perfused hearts of rats heat acclimated at 34 degrees C (AC) and their age-matched controls (C). The pressure-volume curves during isovolumetric conditions showed a shift to the right in AC compared with C hearts. At similar left ventricular (LV) volumes end-diastolic and peak systolic pressures of AC hearts were lower, but no difference was observed in the maximal pressure developed at the highest LV volumes measured. In both C and AC hearts the developed force decreased as pacing rate increased. AC and C heart responses were the same up to 250 pulses/min. At higher frequencies the amplitude of the developed force of AC hearts was smaller than that of the controls. In accordance the tension produced by very early premature beat reduced in AC compared with C hearts. Since no hypertrophy was observed in AC hearts, it is concluded that heat acclimation results in a change in the intrinsic properties of the AC hearts exhibited by increased compliance, reduced chamber stiffness, and a decrease in the tension developed for each volume load. It is also suggested that at a high beating rate AC hearts fail to restitute its contractility as quickly as C hearts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号