首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   22篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
101.
A selective DNA pooling approach was applied to identify QTL for conjugated linoleic acid (CLA), vaccenic acid (VA) and Δ9‐desaturase (D9D) milk content in Italian Brown Swiss dairy cattle. Milk samples from 60 animals with higher values (after correction for environmental factors) and 60 animals with lower values for each of these traits from each of five half‐sib families were pooled separately. The pools were genotyped using the Illumina BovineSNP50 BeadChip. Sire allele frequencies were compared between high and low tails at the sire and marker level for SNPs for which the sires were heterozygous. An r procedure was implemented to perform data analysis in a selective DNA pooling design. A correction for multiple tests was applied using the proportion of false positives among all test results. BTA 19 showed the largest number of markers in association with CLA. Associations between SNPs and the VA and Δ9‐desaturase traits were found on several chromosomes. A bioinformatics survey identified genes with an important role in pathways for milk fat and fatty acids metabolism within 1 Mb of SNP markers associated with fatty acids contents.  相似文献   
102.
103.
While tightly regulated, bacterial cell morphology may change substantially in response to environmental cues. Here we describe such changes in the cyanobacterium Synechococcus sp. strain PCC7942. Once maintained in stationary phase, these rod-shaped organisms stop dividing and elongate up to 50-fold. Increase in cell length of a thymidine-auxotroph strain upon thymidine starvation implies that inhibition of DNA replication underlies cell elongation. Elongation occurs under conditions of limiting phosphorus but sufficient nitrogen levels. Once proliferative conditions are restored, elongated cells divide asymmetrically instead of exhibiting the typical fission characterized by mid-cell constriction. The progeny are of length characteristic of exponentially growing cells and are proficient of further proliferation. We propose that the ability to elongate under conditions of cytokinesis arrest together with the rapid induction of cell division upon nutrient repletion represents a beneficial cellular mechanism operating under specific nutritional conditions.  相似文献   
104.
105.
Vibrio cholerae has been shown to adhere to cornstarch granules. The present work explored the mechanisms involved in this adhesion and the possibility of its occurrence in vivo. The findings suggest that both specific and nonspecific interactions are involved in the adhesion. Nonspecific hydrophobic interactions may play a role, since both V. cholerae and cornstarch granules exhibited hydrophobic properties when they were tested using a xylene-water system. In addition, the presence of bile acids reduced the adhesion. The adhesion also involves some specific carbohydrate-binding moieties on the cell surface, as reflected by reduced adhesion following pretreatment of the bacteria with proteinase K and sodium m-periodate. Further investigations supported these observations and showed that media containing low-molecular-weight carbohydrates had a significant inhibitory effect. Binding cell lysate to starch granules and removing the adhered proteins using either glucose or bile acids led to identification (by liquid chromatography-tandem mass spectrometry analysis) of several candidate V. cholerae outer membrane-associated starch-binding proteins. Different sets of proteins were isolated by removal in a glucose solution or bile acids. When the upper gastrointestinal tract conditions were simulated in vitro, both bile salts and the amylolytic activity of the pancreatic juices were found to have an inhibitory effect on the adherence of V. cholerae to starch. However, during acute diarrhea, this inhibitory effect may be significantly reduced due to dilution, suggesting that adhesion does occur in vivo. Such adhesion may contribute to the beneficial effects observed following administration of granular starch-based oral rehydration solutions to cholera patients.Cholera is a severe diarrheal disease that kills thousands of people each year and affects the lives of millions. This disease is caused by specific serogroups of Vibrio cholerae that are pathogenic to humans (20). Infection by V. cholerae usually starts after consumption of contaminated water or food. The severity of symptoms varies among patients, and in the severe form (cholera gravis) the rate of diarrhea may quickly reach 500 to 1,000 ml h−1, which leads to severe dehydration and, without appropriate treatment, death (20, 40, 41). Death in cholera patients is caused by loss of fluids and salts; therefore, the key to therapy is sufficient rehydration. Furthermore, the rehydration solution should have an electrolyte composition similar to that of the lost fluids (16, 20). This understanding led to what is considered to be one of the most important medical advances in the 20th century, oral rehydration therapy (ORT) (16).The life-saving effect of oral rehydration solutions (ORS) is achieved primarily by maintaining the electrolyte balance (e.g., by stimulating absorption of sodium from the small intestine) (16, 20). However, these solutions do not prevent or reduce to any significant extent the symptoms of cholera. Although in controlled studies ORT is very effective at reducing mortality (4, 29), its use remains low in both developing and developed countries. Despite extensive health education efforts (4, 48), a common perception is that oral rehydration is not effective since it does not reduce the manifestations of diarrhea, such as loss of fluid in the feces, or the duration of the illness (12). Moreover, the glucose-based ORS recommended by the World Health Organization (WHO) may paradoxically increase fecal fluid loss. Because of these limitations, there has been a substantial impetus to develop improved ORS (48).Beneficial effects of starch-based ORS have been shown for the treatment of cholera. Clinical trials with starch-based ORS showed that there was a marked improvement in symptom manifestation, in addition to a life-saving effect (38). Ramakrishna et al. (38) hypothesized that part of the beneficial effect of ORS containing high-amylose cornstarch is due to short-chain fatty acid (SCFA) formation by the colon microbiota, which changes the fluid balance in the colon. The massive loss of fluid reported during cholera episodes (500 to 1,000 ml h−1 in the severe form) has raised the question of whether significant amounts of SCFA are indeed formed under these conditions by colonic microbiota or if an alternative mechanism is responsible for the improvement in symptoms.In search of an explanation, we previously demonstrated that V. cholerae strongly adheres to starch granules (15) and suggested that this may explain, at least in part, the beneficial effect of starch-containing ORS in the treatment of cholera compared to treatment with regular ORS. This study was aimed at understanding the mechanisms involved in adhesion of V. cholerae to starch granules.  相似文献   
106.
Y Shimoni  X Z Zhu  H Levanony  G Segal    G Galili 《Plant physiology》1995,108(1):327-335
Wheat (Triticum aestivum) storage proteins fold and assemble into complexes that are linked by intra- and intermolecular disulfide bonds, but it is not yet clear whether these processes are spontaneous or require the assistance of endoplasmic reticulum (ER)-resident enzymes and molecular chaperones. Aiming to unravel these processes, we have purified and characterized the enzyme protein disulfide isomerase (PDI) from wheat endosperm, as well as studied its developmental expression and intracellular localization. This ER-resident enzyme was previously shown to be involved in the formation of disulfide bonds in secretory proteins. Wheat PDI appears as a 60-kD glycoprotein and is among the most abundant proteins within the ER of developing grains. PDI is notably upregulated in developing endosperm in comparison to embryos, leaves, and roots. In addition, the increase in PDI expression in grains appears at relatively early stages of development, preceding the onset of storage protein accumulation by several days. Subcellular localization analysis and immunogold labeling of electron micrographs showed that PDI is not only present in the lumen of the ER but is also co-localized with the storage proteins in the dense protein bodies. These observations are consistent with the hypothesis that PDI is involved in the assembly of wheat storage proteins within the ER.  相似文献   
107.
Following their sequestration into the endoplasmic reticulum (ER), wheat storage proteins may either be retained and packaged into protein bodies within this organelle or transported via the Golgi to vacuoles. We attempted to study the processes of transport and packaging of wheat storage proteins using the heterologous expression system of yeast. A wild-type wheat [gamma]-gliadin, expressed in the yeast cells, accumulated mostly within the ER and was deposited in protein bodies with similar density to natural protein bodies from wheat endosperm. This suggested that wheat storage proteins contain sufficient information to initiate the formation of protein bodies in the ER of a heterologous system. Only a small amount of the [gamma]-gliadin was transported to the yeast vacuoles. When a deletion mutant of the [gamma]-gliadin, lacking the entire N-terminal repetitive region, was expressed in the yeast cells, the mutant was unable to initiate the formation of protein bodies within the ER and was completely transported to the yeast vacuole. This strongly indicated that the information for packaging into dense protein bodies within the ER resides in the N-terminal repetitive region of the [gamma]-gliadin. The advantage of using yeast to identify the signals and mechanisms controlling the transport of wheat storage proteins and their deposition in protein bodies is discussed.  相似文献   
108.
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.  相似文献   
109.
The autocrine modulation of cardiac K(+) currents was compared in ventricular and atrial cells (V and A cells, respectively) from Type 1 diabetic rats. K(+) currents were measured by using whole cell voltage clamp. ANG II was measured by ELISA and immunofluorescent labeling. Oxidative stress was assessed by immunofluorescent labeling with dihydroethidium, a measure of superoxide ions. In V cells, K(+) currents are attenuated after activation of the renin-angiotensin system (RAS) and the resulting ANG II-mediated oxidative stress. In striking contrast, these currents are not attenuated in A cells. Inhibition of the angiotensin-converting enzyme (ACE) also has no effect, in contrast to current augmentation in V cells. ANG II levels are enhanced in V, but not in A, cells. However, the high basal ANG II levels in A cells suggest that in these cells, ANG II-mediated pathways are suppressed, rather than ANG II formation. Concordantly, superoxide ion levels are lower in diabetic A than in V cells. Several findings indicate that high atrial natriuretic peptide (ANP) levels in A cells inhibit RAS activation. In male diabetic V cells, in vitro ANP (300 nM-1 muM, >5 h) decreases oxidative stress and augments K(+) currents, but not when excess ANG II is present. ANP has no effect on ventricular K(+) currents when the RAS is not activated, as in control males, in diabetic males treated with ACE inhibitor and in diabetic females. In conclusion, the modulation of K(+) currents and oxidative stress is significantly different in A and V cells in diabetic rat hearts. The evidence suggests that this is largely due to inhibition of RAS activation and/or action by ANP in A cells. These results may underlie chamber-specific arrhythmogenic mechanisms.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号