首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   14篇
  国内免费   13篇
  2023年   2篇
  2022年   10篇
  2021年   14篇
  2020年   9篇
  2019年   7篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   22篇
  2012年   18篇
  2011年   20篇
  2010年   8篇
  2009年   12篇
  2008年   10篇
  2007年   17篇
  2006年   7篇
  2005年   6篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有254条查询结果,搜索用时 109 毫秒
21.
目的:利用异丙肾上腺素(ISO)诱导大鼠心肌缺血性损伤模型和心肌细胞损伤模型,并对其进行药物干预,探讨心肌ATP敏感性钾 通道(KATP通道)维持缺血性心肌电平衡的作用与机制。方法:在动物实验中,将雄性SD大鼠,随机分为5组,正常对照组大鼠皮下注射0.9% 氯化钠溶液,其余各组大鼠均皮下注射等量1 g ? L -1 ISO(qd),连续9 d,其间,在第7~9 d,除了正常对照组和模型组外,其他3组大鼠还 分别灌胃给予1.75 g ? L -1 普萘洛尔(PRO)2 mL ? kg -1 ? d -1 、5 g ? L -1 曲美他嗪(VAS)2 mL ? kg -1 ? d -1 或腹腔注射给予5 g ? L -1 二苯基碘(DPI) 1 mL ? kg -1 ? d -1 。在造模期间不同时间点,对各组大鼠进行心电图检查,并制备心肌标本,检测其中KATP通道亚基KIR6.2蛋白表达水平。 在细胞实验中,将H9C2心肌细胞分成对照组(不给药)、ISO组、ISO+ PRO组、ISO+DPI组和ISO+VAS组,后3组细胞均在1 μmol ? L -1 ISO加入前30 min,分别给予2 μmol ? L -1 PRO、10 μmol ? L -1 DPI和10 μmol ? L -1 VAS,且在加入ISO后,与ISO组细胞一样,再孵育1 和24 h,采用实时荧光定量 PCR法测定各组细胞中KATP通道亚基KIR6.2和SUR2A基因表达水平。结果:大鼠实验显示,与正常对照组相比, 模型组大鼠在造模的第3、7 d,心电图参数QTc明显缩短,心率加快(P <0.05),且心肌中KIR6.2蛋白表达明显增多(P <0.01),而造 模9 d后,其QTc明显延长(P <0.01),心率减慢(P <0.05),心肌中KIR6.2蛋白表达显著降低(P <0.01);ISO+ PRO、ISO+DPI 和ISO+VAS各组大鼠在持续3 d分别接受3种药物治疗后,其QTc较模型组明显缩短,心率升高,均趋于恢复正常水平。细胞实验显示, 与对照组相比,ISO组H9C2细胞经ISO孵育1 h后,KIR6.2和SUR2A的mRNA表达显著上调(P <0.05),而在ISO孵育24 h后, KIR6.2和SUR2A的mRNA表达显著下调( P <0.01);与ISO组相比,各给药组细胞经ISO孵育1 h后,KIR6.2和SUR2A的mRNA表 达均有不同程度下调,而在ISO孵育24 h后,KIR6.2和SUR2A的mRNA表达均显著上调(P <0.05或P <0.01)。结论:KATP通道对 维护缺血性心肌电平衡起重要作用。持续性激动β受体、氧化应激或能量供应不足等体内多条途径都会影响KATP通道的表达和功能,而保护 KATP通道功能,对于维持心电平衡,抑制心律失常基质形成,意义重大。  相似文献   
22.
The liver is a major site of glucose disposal during chronic (5 day) total parenteral (TPN) and enteral (TEN) nutrition. Net hepatic glucose uptake (NHGU) is dependent on the route of delivery when only glucose is delivered acutely; however, the hepatic response to chronic TPN and TEN is very similar. We aimed to determine whether the route of nutrient delivery altered the acute (first 8 h) response of the liver and whether chronic enteral delivery of glucose alone could augment the adaptive response to TPN. Chronically catheterized conscious dogs received either TPN or TEN containing glucose, Intralipid, and Travasol for either 8 h or 5 days. Another group received TPN for 5 days, but approximately 50% of the glucose in the nutrition was given via the enteral route (TPN+EG). Hepatic metabolism was assessed with tracer and arteriovenous difference techniques. In the presence of similar arterial plasma glucose levels (approximately 6 mM), NHGU and net hepatic lactate release increased approximately twofold between 8 h and 5 days in TPN and TEN. NHGU (26 +/- 1 vs. 23 +/- 3 micromol.kg(-1).min(-1)) and net hepatic lactate release (44 +/- 1 vs. 34 +/- 6 micromol.kg(-1).min(-1)) in TPN+EG were similar to results for TPN, despite lower insulin levels (96 +/- 6 vs. 58 +/- 16 pM, TPN vs. TPN+EG). TEN does not acutely enhance NHGU or disposition above that seen with TPN. However, partial delivery of enteral glucose is effective in decreasing the insulin requirement during chronic TPN.  相似文献   
23.
The fusion inhibitor T20 belongs to a new class of anti-human immunodeficiency virus type 1 (HIV-1) drugs designed to block entry of the virus into the host cell. However, the success of T20 has met with the inevitable emergence of drug-resistant HIV-1 variants. We describe an evolutionary pathway taken by HIV-1 to escape from the selective pressure of T20 in a treated patient. Besides the appearance of T20-resistant variants, we report for the first time the emergence of drug-dependent viruses with mutations in both the HR1 and HR2 domains of envelope glycoprotein 41. We propose a mechanistic model for the dependence of HIV-1 entry on the T20 peptide. The T20-dependent mutant is more prone to undergo the conformational switch that results in the formation of the fusogenic six-helix bundle structure in gp41. A premature switch will generate nonfunctional envelope glycoproteins (dead spikes) on the surface of the virion, and T20 prevents this abortive event by acting as a safety pin that preserves an earlier prefusion conformation.  相似文献   
24.
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.  相似文献   
25.
Liu J  Deng Y  Zheng Q  Cheng CS  Kallenbach NR  Lu M 《Biochemistry》2006,45(51):15224-15231
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between alpha helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of alpha-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete alpha-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 A resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.  相似文献   
26.
Zheng Q  Deng Y  Liu J  van der Hoek L  Berkhout B  Lu M 《Biochemistry》2006,45(51):15205-15215
Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an alpha-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 degrees C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.  相似文献   
27.
Xiao Y  Guan J  Ping Y  Xu C  Huang T  Zhao H  Fan H  Li Y  Lv Y  Zhao T  Dong Y  Ren H  Li X 《Nucleic acids research》2012,40(16):7653-7665
Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA-target interactions remains a challenge. We performed a systematic analysis of known cancer-related key interactions manually curated from published papers based on different aspects including sequence, expression and function. Known cancer-related key interactions show more miRNA binding sites (especially for 8mer binding sites), more reliable binding of miRNA to the target region, higher expression associations and broader functional coverage when compared to non-disease-related interactions. Through integrating these sequence, expression and function features, we proposed a bioinformatics approach termed PCmtI to prioritize cancer-related key interactions. Ten-fold cross-validation of our approach revealed that it can achieve an area under the receiver operating characteristic curve of 93.9%. Subsequent leave-one-miRNA-out cross-validation also demonstrated the performance of our approach. Using miR-155 as a case, we found that the top ranked interactions can account for most functions of miR-155. In addition, we further demonstrated the power of our approach by 23 recently identified cancer-related key interactions. The approach described here offers a new way for the discovery of novel cancer-related key miRNA-target interactions.  相似文献   
28.
Xiao Y  Xu C  Xu L  Guan J  Ping Y  Fan H  Li Y  Zhao H  Li X 《Gene》2012,499(2):332-338
The development of heart failure (HF) is a complex process that can be initiated by multiple etiologies. Identifying common functional modules associated with HF is a challenging task. Here, we developed a systems method to identify these common functional modules by integrating multiple expression profiles, protein interactions from four species, gene function annotations, and text information. We identified 1439 consistently differentially expressed genes (CDEGs) across HF with different etiologies by applying three meta-analysis methods to multiple HF-related expression profiles. Using a weighted human interaction network constructed by combining interaction data from multiple species, we extracted 60 candidate CDEG modules. We further evaluated the functional relevance of each module by using expression, interaction network, functional annotations, and text information together. Finally, five functional modules with significant biological relevance were identified. We found that almost half of the genes in these modules are hubs in the weighted network, and that these modules can accurately classify HF patients from healthy subjects. We also identified many significantly enriched biological processes that contribute to the pathophysiology of HF, including two new ones, RNA splicing and vesicle-mediated protein transport. In summary, we proposed a novel framework to analyze common functional modules related to HF with different etiologies. Our findings provide important insights into the complex mechanism of HF. Further biological experimentations should be required to validate these novel biological processes.  相似文献   
29.
Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC50s of around 10–15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50Cdc37 in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein–protein interaction in Hsp90 complex for its chemopreventive activity.  相似文献   
30.
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号