首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5939篇
  免费   427篇
  国内免费   378篇
  6744篇
  2024年   45篇
  2023年   100篇
  2022年   186篇
  2021年   323篇
  2020年   188篇
  2019年   222篇
  2018年   243篇
  2017年   182篇
  2016年   230篇
  2015年   367篇
  2014年   396篇
  2013年   504篇
  2012年   560篇
  2011年   437篇
  2010年   288篇
  2009年   249篇
  2008年   257篇
  2007年   254篇
  2006年   240篇
  2005年   227篇
  2004年   145篇
  2003年   126篇
  2002年   122篇
  2001年   121篇
  2000年   93篇
  1999年   121篇
  1998年   54篇
  1997年   65篇
  1996年   57篇
  1995年   30篇
  1994年   36篇
  1993年   32篇
  1992年   41篇
  1991年   36篇
  1990年   29篇
  1989年   23篇
  1988年   19篇
  1987年   13篇
  1986年   19篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   12篇
  1980年   4篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
排序方式: 共有6744条查询结果,搜索用时 15 毫秒
31.
Recent work supports the hypotheses developed by von Economo and Nauta and elaborated by Sallanon et al. that the POA contains a sleep-promoting output that opposes wake-promoting neuronal groups in the PH. The POA gives rise to descending pathways that terminate within wake-promoting populations in pLH, PH and midbrain. Current evidence suggests that this output originates in POA sleep-active GABAergic neurons. This output also seems to convey the signals of homeostatic drive. Disynaptic projections from the SCN to both MnPN and VLPO were recently identified. These may regulate the circadian control of sleep propensity. The hypothesis that the descending projections from POA sleep-active neurons to sites of arousal-related neurons originates in GABAergic neurons must be confirmed. Also to be further clarified is the anatomical distribution of putative sleep-active GABAergic neurons within the POA. Segregated groups have been found in the MnPN and VLPO, but unit recording studies of sleep-active neurons, lesion studies and local neurochemical application studies all indicate that sleep-active neurons may be found diffusely in the POA and adjacent areas. The MnPN has been shown previously to be involved in water balance and blood pressure regulation and to be responsive to hyperthermia. Our studies suggest that this nucleus also contains sleep-active, putative sleep-promoting neurons. However, interactions between sleep control and physiological variables must be considered. In particular, the details of neuronal basis of the coupling of warm-sensitive neurons in MnPN to the POA hypnogenic output has not been explored. It is also worth noting that both the VLPO and MnPN lie close to the ventricular and subarachnoid surface and are punctuated by radial arterioles. The possibility that the sleep-regulatory functions of these sites is coupled to physiological signals conveyed through epithelial cells has been suggested for the actions of PGD2 but has yet to be explored in detail for other putative hypnogens.  相似文献   
32.
33.
Peng YB  Zou C  Wang DH  Gong HQ  Xu ZH  Bai SN 《The New phytologist》2006,170(3):459-466
Abscisic acid (ABA) is known to function in plant stress responses and seed dormancy, and much is known about its detailed mechanisms of signal transduction. Recent studies suggest that this hormone may also play important roles in sugar signaling and assimilate distribution during fruit development. However, little is known about the role of ABA in actively growing or differentiating fruits and other plant organs or tissues. To explore whether ABA functions during the early development of reproductive organs, we carried out ABA immunolocalization using monoclonal antibodies. The specific ABA accumulation pattern was verified by gas chromatography-mass spectrometry (GC-MS). ABA was not only detected in primordial cells of flower organs, but was also detected in nursing cells (e.g. tapetum and integuments), which function in supplying nutrition for germ cell development. These findings suggest that, in addition to its well-known function as a 'negative hormone', ABA may play some 'positive' roles during plant development, including possible involvement in the regulation of assimilate distribution.  相似文献   
34.
Apoptosis - Fuchs endothelial corneal dystrophy (FECD) is one of the main causes for corneal endothelial blindness, which is characterized by the progressive decline of corneal endothelial cells....  相似文献   
35.
36.
通过研究改性壳聚糖与细胞的相互作用评价其生物相容性   总被引:4,自引:0,他引:4  
利用细胞生物学的方法, 研究了四种不同的细胞在经过改性的壳聚糖(CHITOSAN) 膜上的生长,测定了细胞相对黏附力、细胞初始黏附率, 并利用FDA 实验测定了细胞活力,从而从多个方面评价了这几种不同材料的生物相容性。实验结果表明,与明胶交联的壳聚糖膜明显比其它两种膜有利于细胞的黏附和生长,为进一步对材料进行筛选奠定了基础。  相似文献   
37.
38.
A series of 2,6-bis(imino)pyridyl iron(III) complexes of the general formula [2,6-(ArNCMe)2C5H3N]FeCl3 (Ar = -C6H5, 3a; 2-MeC6H4, 3b; 2-EtC6H4, 3c; 2-iPrC6H4, 3d; cyclohexyl, 3e; 4-MeC6H4, 3f; 4-iPrC6H4, 3g; 4-FC6H4, 3h and 4-CF3C6H4, 3i), activated by alkylaluminum, MAO or MMAO, have been investigated in 1,3-butadiene polymerization. Iron(III) complex (3a), with the least steric hindrance around the metal center, gives polymer up to 99% in yield in 4 h (butadiene to iron ratio = 1000), and trans-1,4 selectivity about 94.7% at room temperature in toluene, while those (3b-3d) bearing alkyl substituents at the 2-position of each N-aryl ring exhibit much lower catalytic activity and tunable trans-1,4 selectivity. Introduction of an alkyl group at the 4-position (para-position, 3f and 3g) exerts a slightly beneficial effect on the trans-1,4 selectivity, while electronegative groups at the same position (3h and 3i) affect negatively on the activity. The effects of temperature, types of cocatalyst and Al/Fe molar ratio on the polymerization behavior are investigated. More importantly, a mechanism for forming trans-1,4 structure is also proposed.  相似文献   
39.
Mutations in the human ether-a-go-go-related gene (HERG) cause long QT syndrome. We previously showed that the HERG N470D mutation expressed as homotetrameric channels causes a protein trafficking defect, and this can be corrected by the HERG channel blocking drug E-4031. The N470D mutant also has been reported to cause dominant negative suppression of HERG current when coexpressed with wild-type channel subunits. The aims of this study were 1). to investigate the molecular mechanism responsible for the dominant negative effect of the N470D mutant coexpressed with wild-type subunits and 2). to test whether the trafficking defective heteromeric channels could be pharmacologically rescued by E-4031. Using a combination of immunoprecipitation and Western blot methods, we showed that N470D mutant and wild-type HERG subunits were physically associated in the endoplasmic reticulum as heteromeric channels. The coassembly resulted in the retention of both wild-type and N470D subunits in the endoplasmic reticulum. Culturing cells in E-4031 increased the cell surface expression of these channels, although with an altered electrophysiological phenotype. These results suggest that the dominant negative effect of the N470D wild-type coassembled channels is caused by retention of heteromeric channels in the endoplasmic reticulum and that the trafficking defect of these channels can be corrected by specific pharmacological strategies.  相似文献   
40.
T W Gong  B A Horwitz  J S Stern 《Life sciences》1990,46(14):1037-1044
Central administration of 2-deoxy-D-glucose (2-DG) decreases brown fat thermogenesis. This effect is suggested to be mediated via a central control mechanism. Our study was designed to determine the importance of the sympathetic nervous system in the response of brown fat to intraperitoneal (i.p.) injection of 2-DG. Unilateral denervation of interscapular brown adipose tissue (IBAT) was performed on male Sprague-Dawley rats (300 g body weight). Nine days after surgery, rats were injected i.p. with either saline vehicle (0.9% sodium chloride) or 2-DG (360 mg/kg wt) and then killed one hour later. Sympathetic denervation resulted in 50% decreases in total IBAT protein and in mitochondrial protein recovered. In the denervated lobes, mitochondrial GDP binding (expressed as nmol/mg mitochondrial protein and as total activity recovered) was decreased to 36% and 18%, respectively. Injection of 2-DG did not change mitochondrial protein content in either the innervated or denervated IBAT. In the innervated lobes, 2-DG significantly lowered GDP binding to 55% of that in saline-treated animals, whether expressed per mg mitochondrial protein or as total recovered activity. In contrast, 2-DG did not further decrease GDP binding in the denervated lobes. In conclusion, the effects of i.p. injection of 2-DG on brown fat thermogenesis (as evidenced by GDP binding) appear to be primarily mediated via the sympathetic nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号