首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   9篇
  国内免费   39篇
  217篇
  2023年   8篇
  2022年   6篇
  2021年   15篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   13篇
  2012年   17篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   14篇
  2003年   5篇
  2002年   4篇
  2000年   3篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1987年   2篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
31.
32.
Liu X  Wang Y  Cheng L  Song Y  Lai R 《Peptides》2007,28(8):1540-1544
Many neuroendocrine peptides that are distributed in amphibian gastrointestinal tract and central nervous system are also found in amphibian skins, and these peptides are classified into skin-gut-brain triangle peptides, such as bombesins, gastrin-releasing peptides. Cholecystokinins (CCKs) are neuroendocrine peptides known for their production in the gastrointestinal tract and central nervous system of mammalians. Several CCKs have been identified from two amphibians, Rana catesbeiana and Xenopus laevis. These amphibian CCKs are found to be express in brain and in the gastrointestinal tract, but not in skin. In the current report, a cholecystokinin (CCK) isoform was identified from skin secretions of the frog, Rana nigrovittata. Its amino acid sequence is RVDGNSDQKAVIGAMLAKDLQTRKAGSSTGRYAVLPNR PVIDPTHRINDRDYMGWMDF, which is the same with that of CCK from R. catesbeiana. Four different cDNAs (GenBank accession nos. EF608063-6) encoding CCK precursors were cloned from the cDNA library of the skin of R. nigrovittata. The present data demonstrated that amphibian CCK could also be expressed in gastrointestinal tract, central nervous system and skin as other amphibian skin-gut-brain triangle peptides.  相似文献   
33.
Gap junction channels formed by connexin50 (Cx50) are critical for maintenance of eye lens transparency. Cleavage of the carboxyl terminus (CT) of Cx50 to produce truncated Cx50 (Cx50trunc) occurred naturally during maturation of lens fiber cells. The mechanism of its altered properties is under confirmation. It has been suggested that calmodulin (CaM) participates in gating some kinds of gap junction. Here, we performed confocal colocalization and co-immunoprecipitation experiments to study the relationships between Cx50 and CaM. Results exhibited that the CaM could colocalize Ca2+ dependently with CT in the linear area of cell-to-cell contact formed by Cx50trunc, while it could not localize in the linear area without expression of CT. Further study indicated that the CT could interact Ca2+ independently with the cytoplasmic loop (CL) of Cx50. These data put forward the importance of Ca2+-independent intramolecular interaction between CT and CL of Cx50, which mediate the Ca2+-dependent binding of CaM to Cx50. These intra- and intermolecular interactions may further improve our understanding of biological significance of the Cx50 in the eye lens.  相似文献   
34.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells, but not in normal cells. However, more and more tumor cells remain resistant to TRAIL, which limited its application for cancer therapy. Expression of the adenovirus serotype 5 (Ad5) E1A sensitizes tumor cells to apoptosis by TNF-alpha, Fas-ligand, and TRAIL. Here we asked whether E1A overcomes this resistance and enhances TRAIL-induced apoptosis in the tumor cells. Our results revealed that the tumor cell lines, HeLa and HepG2, with infection by Ad-E1A, were highly sensitive to TRAIL-induced apoptosis. Importantly, we found that in normal primary human lung fibroblast cells (HLF) TRAIL is capable of inducing apoptosis in combination with E1A as efficiently as in some tumor cell lines. The adenovirus type 5 encoding proteins, E1B19K and E3 gene products, have been shown to inhibit E1A and TRAIL-induced apoptosis of HLF cells by using the recombinant adenovirus AdDeltaE1B55K, with mutation of E1B55K, containing E1B19K and complete E3 region. Further results demonstrated that the expression of DR5 and TRAIL was down-regulated in the AdDeltaE1B55K co-infected HLF cells. These findings suggest that TRAIL may play an important role in limiting virus infections and the ability of adenovirus to inhibit killing may prolong acute and persistent infections. The results from this study have also suggested the possibility that the combination of E1A with TRAIL could be used in the treatment of human malignancy, or in the selection of the optimal adenovirus mutant as effective delivering vector for cancer therapy.  相似文献   
35.
36.
37.
Metamorphosis in insects is regulated by juvenile hormone (JH) and ecdysteroids. The mechanism of 20-hydroxyecdysone (20E), but not of JH action, is well understood. A basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family member, methoprene tolerant (Met), plays an important role in JH action. Microarray analysis and RNA interference (RNAi) were used to identify 69 genes that require Met for their hydroprene-regulated expression in the red flour beetle, Tribolium castaneum. Quantitative real time PCR analysis confirmed microarray data for 13 of the 16 hydroprene-response genes tested. The members of the bHLH-PAS family often function as heterodimers to regulate gene expression and Met is a member of this family. To determine whether other members of the bHLH-PAS family are required for the expression of JH-response genes, we employed RNAi to knockdown the expression of all 11 members of the bHLH-PAS family and studied the expression of JH-response genes in RNAi insects. These studies showed that besides Met, another member of this family, steroid receptor co-activator (SRC) is required for the expression of 15 JH-response genes tested. Moreover, studies in JH responsive Aag-2 cells revealed that Aedes aegypti homologues of both Met and SRC are required for the expression of the JH-response gene, kr-h1, and SRC is required for expression of ecdysone-response genes. These data suggest the steroid receptor co-activator plays key roles in both JH and 20E action suggesting that this may be an important molecule that mediates cross-talk between JH and 20E to prevent metamorphosis.  相似文献   
38.

Background  

UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cells.  相似文献   
39.
Lipid membranes structurally define the outer surface and internal organelles of cells. The multitude of proteins embedded in lipid bilayers are clearly functionally important, yet they remain poorly defined. Even today, integral membrane proteins represent a special challenge for current large scale shotgun proteomics methods. Here we used endothelial cell plasma membranes isolated directly from lung tissue to test the effectiveness of four different mass spectrometry-based methods, each with multiple replicate measurements, to identify membrane proteins. In doing so, we substantially expanded this membranome to 1,833 proteins, including >500 lipid-embedded proteins. The best method combined SDS-PAGE prefractionation with trypsin digestion of gel slices to generate peptides for seamless and continuous two-dimensional LC/MS/MS analysis. This three-dimensional separation method outperformed current widely used two-dimensional methods by significantly enhancing protein identifications including single and multiple pass transmembrane proteins; >30% are lipid-embedded proteins. It also profoundly improved protein coverage, sensitivity, and dynamic range of detection and substantially reduced the amount of sample and the number of replicate mass spectrometry measurements required to achieve 95% analytical completeness. Such expansion in comprehensiveness requires a trade-off in heavy instrument time but bodes well for future advancements in truly defining the ever important membranome with its potential in network-based systems analysis and the discovery of disease biomarkers and therapeutic targets. This analytical strategy can be applied to other subcellular fractions and should extend the comprehensiveness of many future organellar proteomics pursuits.The plasma membrane provides a fundamental physical interface between the inside and outside of any cell. Beyond creating a protected compartment with a segregated, distinct, and well controlled internal milieu for the cell, it also mediates a wide variety of basic biological functions including signal transduction, molecular transport, membrane trafficking, cell migration, cell-cell interactions, intercellular communication, and even drug resistance. Plasma membrane-associated proteins, especially integral membrane proteins (IMPs)1 that traverse the lipid bilayer, are key elements mediating these vital biological processes. Consistent with its fundamental importance in both normal cellular functions and pathophysiology, the plasma membrane has also been targeted extensively for biomarker discovery and drug development. In fact, more than two-thirds of known targets for existing drugs are plasma membrane proteins (1).Despite the potential benefits, profiling the proteome of plasma membranes comprehensively using standard large scale methods including MS-based strategies has been limited and technically quite challenging. Intrinsic hydrophobicity, a wide concentration range of proteins, and other factors have hampered IMP resolution and identification using conventional two-dimensional gel electrophoresis. Gel and gel-free protein separations, including combinations of both, have been reported as an alternative to two-dimensional gel electrophoresis (29). Yet most such efforts have focused predominantly on identifying rather soluble proteins from body fluids (i.e. plasma, serum, and cerebrospinal fluid), cell lysates, or cytoplasm. These proteins, unlike IMPs, are relatively abundant and readily susceptible to enzymatic digestion in solution. Various attempts have been made to solubilize and enrich for IMPs, including different detergents, solvents, high pH solutions, and affinity purification (1022). Even when organellar membranes are enriched through isolation by subcellular fractionation, the yield of proteins identified has been below expectation, especially for multipass transmembrane proteins such as G-protein-coupled receptors.Here we systematically characterize four analytical approaches to enhance the identification of proteins, specifically those embedded in plasma membranes isolated directly from vascular endothelium in rat lung. Endothelial cells (ECs) constitute the tissue-blood interface that controls many important physiological functions, including tissue homeostasis, nutrition, vasomotion, and even drug delivery. In vivo mapping of the EC plasma membrane proteome provides unique opportunities for extending basic understanding in vascular biology and for directing the delivery of therapeutic and imaging agents in vivo (2325). But it also presents distinct challenges beyond those generally associated with extraction, solubilization, and identification of IMPs in cells and tissues. ECs form a thin monolayer lining each blood vessel. They constitute a very small fraction of all the cells existing in tissue, thereby making it difficult to isolate sufficiently pure EC plasma membrane fractions for proteomics analysis using conventional subcellular fractionation techniques. Although relatively simple to isolate from tissue and grow in culture, ECs require cues from the tissue microenvironment to maintain their tissue-specific qualities and thus undergo rapid and considerable phenotypic drift after isolation (26).We have developed a specialized coating procedure using colloidal silica nanoparticles perfused through the blood vessels of the tissue to isolate luminal plasma membranes of the vascular endothelium as they exist natively in tissue (2628). Our initial survey of these plasma membranes isolated directly from rat lungs used primarily three standard analytical techniques of the time: two-dimensional electrophoresis, Western analysis, and the shotgun method of two-dimensional liquid chromatography-tandem mass spectrometry (24, 26). We identified 450 proteins of which only ∼15% were IMPs. Although at the time this was a notable total number of proteins, more IMPs are expected. In fact, this large scale 2DC study did not identify several well known EC surface marker proteins, including specific enzymes, adhesion molecules, and growth factor receptors.Here we comparatively analyze four different MS-based strategies involving two- and three-dimensional separation by combining protein prefractionation via SDS-PAGE with in-gel digestion to produce peptides separated by one- and two-dimensional nano-HPLC before seamless and continuous MS analysis. Each method used multiple replicate measurements to comprehensively identify proteins, especially IMPs, and in doing so achieved a clear statistical definition of completeness that permits meaningful comparisons. Ultimately this analysis greatly expanded the EC plasma membranome to 1,833 proteins of which nearly 30% are membrane-embedded.  相似文献   
40.
This study aimed to determine the efficacy and safety of human umbilical cord-derived mesenchymal stem cell (HUC-MSC) transplantation for treating elderly vascular dementia (VaD). Ten VaD patients (average age, 73.88 years old) were treated. HUC-MSCs were isolated, cultured, stem cell-marked, and qualified and administered as a 3-course intravenous infusion to these patients. The Mini-Mental State Exam (MMSE) and the Activities of Daily Living Index (Barthel Index scoring system) were used to assess the cognitive function and daily living activity improvements in these patients before transplantation (T0), 3 months after transplantation (T1), and 6 months after transplantation (T2). The MMSE and Barthel Index scores were 15.80 ± 5.49 and 42.00 ± 9.33 points at T0, respectively, and were significantly different when compared with those at T1 (19.20 ± 6.39 and 49.20 ± 10.86 points, respectively, P < 0.05), whereas there was no difference when compared with those at T2 (14.00 ± 6.55 and 40.70 ± 10.37 points, respectively, P > 0.05). HUC-MSC transplantation was safe and feasible for VaD and improved early cognitive functions and daily living activities in VaD patients to a certain extent, thus improving patients’ quality of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号