首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35597篇
  免费   3275篇
  国内免费   5204篇
  2024年   121篇
  2023年   505篇
  2022年   1173篇
  2021年   1882篇
  2020年   1365篇
  2019年   1746篇
  2018年   1589篇
  2017年   1230篇
  2016年   1663篇
  2015年   2420篇
  2014年   2912篇
  2013年   3010篇
  2012年   3630篇
  2011年   3290篇
  2010年   2111篇
  2009年   1876篇
  2008年   2103篇
  2007年   1892篇
  2006年   1652篇
  2005年   1351篇
  2004年   1110篇
  2003年   1038篇
  2002年   872篇
  2001年   547篇
  2000年   474篇
  1999年   435篇
  1998年   283篇
  1997年   260篇
  1996年   231篇
  1995年   183篇
  1994年   178篇
  1993年   124篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   76篇
  1988年   61篇
  1987年   40篇
  1986年   51篇
  1985年   60篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
262.
ZAK (sterile alpha motif and leucine zipper containing kinase AZK), a serine/threonine kinase with multiple biochemical functions, has been associated with various cell processes, including cell proliferation, cell differentiation, and cardiac hypertrophy. In our previous reports, we found that the activation of ZAKα signaling was critical for cardiac hypertrophy. In this study, we show that the expression of ZAKα activated apoptosis through both a FAS‐dependent pathway and a mitochondria‐dependent pathway by subsequently inducing caspase‐3. ZAKβ, an isoform of ZAKα, is dramatically expressed during cardiac hypertrophy and apoptosis. The interaction between ZAKα and ZAKβ was demonstrated here using immunoprecipitation. The results show that ZAKβ has the ability to diminish the expression level of ZAKα. These findings reveal an inherent regulatory role of ZAKβ to antagonize ZAKα and to subsequently downregulate the cardiac hypertrophy and apoptosis induced by ZAKα.  相似文献   
263.
With an increasing aging society, China is the world’s fastest growing markets for oral implants. Compared with traditional oral implants, immediate implants cause marginal bone resorption and increase the failure rate of osseointegration, but the mechanism is still unknown. Therefore, it is important to further study mechanisms of tension stimulus on osteoblasts and osteoclasts at the early stage of osseointegration to promote rapid osseointegration around oral implants. The results showed that exosomes containing circ_0008542 from MC3T3-E1 cells with prolonged tensile stimulation promoted osteoclast differentiation and bone resorption. Circ_0008542 upregulated Tnfrsf11a (RANK) gene expression by acting as a miR-185-5p sponge. Meanwhile, the circ_0008542 1916-1992 bp segment exhibited increased m6A methylation levels. Inhibiting the RNA methyltransferase METTL3 or overexpressing the RNA demethylase ALKBH5 reversed osteoclast differentiation and bone resorption induced by circ_0008542. Injection of circ_0008542 + ALKBH5 into the tail vein of mice reversed the same effects in vivo. Site-directed mutagenesis study demonstrated that 1956 bp on circ_0008542 is the m6A functional site with the abovementioned biological functions. In conclusion, the RNA methylase METTL3 acts on the m6A functional site of 1956 bp in circ_0008542, promoting competitive binding of miRNA-185-5p by circ_0008542, and leading to an increase in the target gene RANK and the initiation of osteoclast bone absorption. In contrast, the RNA demethylase ALKBH5 inhibits the binding of circ_0008542 with miRNA-185-5p to correct the bone resorption process. The potential value of this study provides methods to enhance the resistance of immediate implants through use of exosomes releasing ALKBH5.Subject terms: Epigenetics, Predictive markers  相似文献   
264.
The natural products of both eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Because the chemical structures of EC and PR toxin are closely related to each other and differ only by a hydroxyl functional group in EC and an aldehyde functional group in PR toxin at the C-12 position, the chemical transformation of EC into PR toxin was investigated. Oxidation with a chromic anhydride-pyridine complex was found to be the most satisfactory method.  相似文献   
265.
The low lysine content of waxy maize cannot meet the nutritional requirements of humans, livestock, or poultry. In the present study, the high-lysine genes o2 and o16 were backcrossed into wx lines using the maize high-lysine inbreds TAIXI19 (o2o2) and QCL3021 (o16o16) as donors and the waxy maize inbred line QCL5019 (wxwx) as a receptor. In the triple-cross F1, backcross, and inbred generations, the SSR markers phi027 and phi112 within the wx and o2 genes and the SSR marker umc1121 linked to the o16 gene were used for foreground selection. Background selection of the whole-genome SSR markers was performed for the selected individuals. The grain lysine content was determined using the dye-binding lysine method. The waxiness of the grain was determined with the I2-KI staining and dual-wavelength spectrophotometric analysis. The BC2F2 generation included 7 plants of genotype wxwxo2o2O16_, 19 plants of genotype wxwxo16o16O2_, and 3 plants of genotype wxwxo2o2o16o16. In these seeds, the average amylopectin content was 96.67%, 96.87%, and 96.62%, respectively, which is similar to that of QCL5019. The average lysine content was 0.555%, 0.380%, and 0.616%, respectively, representing increases of 75.1%, 19.9%, 94.3%, respectively, over QCL5019. The average genetic background recovery rate of the BC2F3 families was 95.3%, 94.3%, 94.2%, respectively. Among these 3 wxwxo2o2O16O16 families, 4 wxwxo2o2O16o16 families, and 3 wxwxo2o2o16o16 families, the longest imported parent donor fragment was 113.35 cM and the shortest fragment was 11.75 cM. No significant differences in lysine content were found between the BC2F4 seeds and the BC2F3 seeds in these 10 families. This allowed us to increase the lysine content of waxy corn and produce seeds with excellent nutritional characteristics suitable for human consumption, animal feed, and food processing. This may be of significance in the breeding of high-quality corn and in improvement of the nutrition of humans, livestock, and poultry.  相似文献   
266.
Concentric magnetic structures (ring and square) with domain wall (DW) pinning geometry are designed for biological manipulation. Magnetic beads collection was firstly demonstrated to analyse the local magnetic field generated by DWs and the effective regions to capture magnetic targets of size 1 μm. Primary mouse embryonic fibroblasts (MEFs) are magnetically labeled by internalizing poly (styrene sulfonic acid) stabilized magnetic nanoparticles (PSS-MNPs) and then are selectively trapped by head-to-tail DWs (HH DWs) or tail-to-tail DWs (TT DWs) to be arranged into linear shape or cross shape. The morphologies and the nuclear geometry of the cells growing on two kinds of concentric magnetic structures are shown to be distinctive. The intracellular magnetic forces generated by the local magnetic field of DWs are found to influence the behaviour of cells.  相似文献   
267.
The Wilms’ tumor-associated gene WT1 encodes a tumor suppressor gene, which is implicated in renal differentiation and development of adult urogenital system. Wilms’ tumor 1-associating protein (WTAP) is initially identified as a nuclear protein that specifically interacts with WT1 in both in vitro and in vivo assays. WTAP is ubiquitously expressed in different tissues and various growth periods, and its expression is involved in cell cycle, RNA splicing and stabilization, N6-methyladenosine RNA modification, cell proliferation, and apoptosis as well as embryonic development. In the present review, we aimed to summarize the functions of WTAP in various physiological and pathological processes, in particular with regard to the current knowledge about the role of WTAP in tumorigenesis of different cancers.  相似文献   
268.
269.
ATP-dependent Lon proteases function in bacterial pathogenesis by regulating the expression of the Type III secretion system; however, little is known about how Lon proteases regulate fungal pathogenesis. We previously investigated Lon-binding proteins involved in fungal pathogenesis that interact with PrePL, the smallest Magnaporthe oryzae Lon-binding protein. Here, we show that Lon cleaves PrePL and produces Pc, an extracellular 11-kDa isoform with catalase and peroxidase activity. The ΔPrePL loss-of-function strain showed stronger sporulation and accelerated disease development, suggesting a temporally specific negative regulatory mechanism controlled by PrePL in disease progression. Neither the truncated Pc, nor the full-length PrePL missing the Lon cleavage site complemented the ΔPrePL phenotype, suggesting that full-length PrePL and Pc both function in fungal development. PrePL targeted to the mitochondria undergoes hydrolysis by Lon to produce Pc, which accumulates in the fungal apoplast. Importantly, recombinant Pc induced plant defence responses and cell death after being infiltrated into selected plant leaves, indicating that it functions as an avirulence factor. This work thus reveals a novel pathogenic factor in the fungal Lon-mediated pathway. Additionally, our results provide new insight into the functions of a full-length protein and its cleaved isoform in fungal pathogenesis.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号