首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39643篇
  免费   3033篇
  国内免费   3016篇
  45692篇
  2024年   106篇
  2023年   554篇
  2022年   1227篇
  2021年   2224篇
  2020年   1395篇
  2019年   1762篇
  2018年   1772篇
  2017年   1191篇
  2016年   1688篇
  2015年   2456篇
  2014年   2910篇
  2013年   3148篇
  2012年   3646篇
  2011年   3212篇
  2010年   2013篇
  2009年   1634篇
  2008年   1995篇
  2007年   1737篇
  2006年   1595篇
  2005年   1294篇
  2004年   1056篇
  2003年   916篇
  2002年   763篇
  2001年   664篇
  2000年   588篇
  1999年   629篇
  1998年   353篇
  1997年   364篇
  1996年   345篇
  1995年   318篇
  1994年   332篇
  1993年   264篇
  1992年   312篇
  1991年   243篇
  1990年   213篇
  1989年   190篇
  1988年   127篇
  1987年   101篇
  1986年   92篇
  1985年   86篇
  1984年   59篇
  1983年   53篇
  1982年   34篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50–1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86–92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.  相似文献   
132.
Xu L  Qin W  Zhang H  Wang Y  Dou H  Yu D  Ding Y  Yang L  Wang Y 《Mutation research》2012,743(1-2):75-82
Microcystin-LR (MC-LR) is a cyclic heptapeptide that acts as a potent hepatotoxin and carcinogen. However, the mechanism of its carcinogenic action remains undetermined. In this study, MC-LR was used to induce the malignant transformation of the WRL-68 cell line. Alterations in microRNA (miRNA) expression in the transformed cell were analyzed to determine the role of miRNAs in MC-LR-induced carcinogenesis. Cultured WRL-68 cells (labeled 25MC10) were continuously exposed to a low concentration (10 μg/L) of MC-LR for 25 passages. Compared with the mock-treated parental cells, the induced 25MC10 cells exhibited a higher growth rate, resistance to serum-induced terminal differentiation, and tumorigenicity in a nude mouse xenograft test. A pilot miRNA expression array analysis was conducted on the 25MC10 cells, followed by validation of select miRNAs by RT-PCR. We found that the onco-miRNAs miR-21 and miR-221 displayed upregulated expression while the liver-specific miR-122 was downregulated. These results suggest that chronic MC-LR exposure alters the miRNA expression profile of WRL-68 cells and causes phenotypic transformation. We propose that characteristic miRNA alterations could be used as molecular targets for the development of environmental water monitoring methods.  相似文献   
133.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.  相似文献   
134.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.  相似文献   
135.
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   
136.
Nuclear divisions of carpospores, conchocelis and conchospores of Porphyra yezoensis, P. haitanensis, P. katadai var. hemiphylla and P. oligospermatangia from China were investigated. The observations showed diploid chromosome numbers of 2n = 6 for P. yezoensis and P. oligospermatangia, and 2n = 10 for P. haitanensis and P. katadai var. hemiphylla. For all four species, somatic pairing of chromosome sets was observed in late prophase. Sister chromosomes separated at anaphase as mitosis took place in carpospores, conchocelis filamentous cells, conchosporangial branch cells and sporangial cells (conchospore formation). Chromosome configurations of tetrad and ring-shaped in conchospore germination were observed, demonstrating the occurrence of meiosis. The characteristics of diploid nuclear division in 2n = 6 species are the same as those of 2n = 10 species. The influence of somatic pairing on nuclear division of diploid cells in Porphyra was discussed.  相似文献   
137.
Aquaporin Z (AqpZ), a typical orthodox aquaporin with six transmembrane domains, was expressed as a fusion protein with TrxA in E. coli in our previous work. In the present study, three fusion partners (DsbA, GST and MBP) were employed to improve the expression level of this channel protein in E. coli. The result showed that, compared with the expression level of TrxA-AqpZ, five- to 40-fold increase in the productivity of AqpZ with fusion proteins was achieved by employing these different fusion partners, and MBP was the most efficient fusion partner to increase the expression level. By using E. coli C43 (DE3)/pMAL-AqpZ, the effects of different expression conditions were investigated systematically to improve the expression level of MBP-AqpZ in E. coli. The high productivity of MBP-AqpZ (200 mg/l) was achieved under optimized conditions. The present work provides a novel approach to improve the expression level of membrane proteins in E. coli.  相似文献   
138.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   
139.

Background

Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood.

Objectives

We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function.

Methods

HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry.

Results

We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all P trend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (P trend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all P trend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all P trend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV.

Conclusions

In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号