首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110555篇
  免费   8460篇
  国内免费   6967篇
  125982篇
  2024年   215篇
  2023年   1451篇
  2022年   3242篇
  2021年   5477篇
  2020年   3578篇
  2019年   4376篇
  2018年   4353篇
  2017年   3229篇
  2016年   4600篇
  2015年   6680篇
  2014年   7863篇
  2013年   8316篇
  2012年   9961篇
  2011年   8868篇
  2010年   5445篇
  2009年   4746篇
  2008年   5587篇
  2007年   4923篇
  2006年   4371篇
  2005年   3331篇
  2004年   2933篇
  2003年   2531篇
  2002年   2205篇
  2001年   2001篇
  2000年   1860篇
  1999年   1841篇
  1998年   1017篇
  1997年   1138篇
  1996年   1018篇
  1995年   919篇
  1994年   942篇
  1993年   667篇
  1992年   995篇
  1991年   840篇
  1990年   613篇
  1989年   559篇
  1988年   487篇
  1987年   412篇
  1986年   389篇
  1985年   390篇
  1984年   212篇
  1983年   197篇
  1982年   137篇
  1981年   115篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) has been identified as an oncogene in several cancers. However, the biological function and role of DANCR in hepatocellular carcinoma (HCC) remain unclear. Our current study aimed to investigate the detailed mechanism of DANCR in HCC. We found that DANCR was significantly upregulated in HCC cell lines in comparison to LO2 cells. Then, we observed that knockdown of DANCR could greatly inhibit Huh7 and HepG2 cell proliferation. In addition, HCC cell apoptosis was increased by silence of DANCR and meanwhile, cell cycle progression was blocked in G1 phase. Apart from these, downregulation of DANCR repressed HCC cell migration and invasion ability obviously. As predicted by the bioinformatics analysis, microRNA-216a-5p (miR-216a-5p) could serve as a direct target of DANCR. MiR-216a-5p has been reported to be involved in many cancers. Here, the correlation between miR-216a-5p and DANCR was confirmed using dual-luciferase reporter assay and radioimmunoprecipitation assay. Subsequently, Kruppel-like factor 12 (KLF12) exerts an important role in different tumor types. KLF12 can function as a downstream target of miR-216a-5p. Finally, the in vivo experiments were used and the data proved that DANCR also strongly suppressed HCC tumor growth in vivo via targeting miR-216a-5p and KLF12. In conclusion, our study indicated that DANCR might provide a new perspective for HCC treatment.  相似文献   
993.
Obesity is well-known as the second factor for tumorigenesis after smoking and is bound up with the malignant progression of several kinds of cancers, including esophageal cancer, liver cancer, colorectal cancer, kidney cancer, and ovarian cancer. The increased morbidity and mortality of obesity-related cancer are mostly attributed to dysfunctional adipose tissue. The possible mechanisms connecting dysfunctional adipose tissue to high cancer risk mainly focus on chronic inflammation, obesity-related microenvironment, adipokine secretion disorder, and browning of adipose tissue, and so forth. The stromal vascular cells in adipose tissue trigger chronic inflammation through secreting inflammatory factors and promote cancer cell proliferation. Hypertrophic adipose tissues lead to metabolic disorders of adipocytes, such as abnormal levels of adipokines that mediate cancer progression and metastasis. Cancer patients often show adipose tissue browning and cancerous cachexia in an advanced stage, which lead to unsatisfied chemotherapy effect and poor prognosis. However, increasing evidence has shown that adipose tissue may display quite opposite effects in cancer development. Therefore, the interaction between cancers and adipose tissue exert a vital role in mediates adipose tissue dysfunction and further leads to cancer progression. In conclusion, targeting the dysfunction of adipose tissue provides a promising strategy for cancer prevention and therapy.  相似文献   
994.
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.  相似文献   
995.
996.
997.
Autophagy is a vital negative factor regulating cellular senescence. Purple sweet potato color (PSPC), one type of flavonoid, has been demonstrated to suppress endothelial senescence and restore endothelial function in diabetic mice by inhibiting the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome. However, the roles of autophagy in the inflammatory response during endothelial senescence are unknown. Here, we found that PSPC augmented autophagy to restrict high-glucose-induced premature endothelial senescence. In addition, PSPC administration impaired endothelium aging in diabetic mice by increasing autophagy. Inhibition of autophagy accelerated endothelial senescence, while enhancement of autophagy delayed senescence. Moreover, deactivation of the NLRP3 inflammasome triggered by PSPC was autophagy-dependent. Autophagy receptor microtubule-associated protein 1 light chain 3 and p62 interacted with the inflammasome component NLRP3, suggesting that autophagosomes target the NLRP3 inflammasome and deliver it to the lysosome for degradation. Altogether, PSPC amplified cellular autophagy, subsequently attenuated NLRP3 inflammasome activity and finally delayed endothelial senescence to ameliorate cardiovascular complication. These results suggest a potential therapeutic target in senescence-related cardiovascular diseases.  相似文献   
998.
Rhizoma Paridis, a traditional Chinese medicine, has shown promise in cancer prevention and therapy. Polyphyllin II is one of the most significant saponins in Rhizoma Paridis and it has toxic effects on kinds of cancer cells. However, our results in this study proved that the polyphyllin II has hepatotoxicity in vitro through caspases activation and cell-cycle arrest. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results indicated polyphyllin II inhibited proliferation, induced apoptosis in HepaRG cells and HL-7702 cells and showed a concentration and time-dependent. Then, we selected the innovative cell model-HepaRG cells to explore the mechanism of hepatotoxicity. Our data showed the reactive oxygen species (ROS) increased and the mitochondrial membrane potential decreased in HepaRG cells after administration of polyphyllin II. Besides, with the increase of concentration, the release of lactate dehydrogenase increased and the S phase of the cell cycle was arrested. Nevertheless, when pretreatment with antioxidant N-acetylcysteine, apoptotic cells decreased significantly, inhibited the production of ROS and improved the decrease of membrane potential in HepaRG cells. Moreover, polyphyllin II treatment increased levels of Fas, Bax, cytochrome c, activated caspase-3, -8, -9, cleaved poly(ADP-ribose) polymerase and decreased Bcl-2 expression levels. Finally, we identified two signal pathways of apoptosis induced by polyphyllin II including the death receptor pathway and the mitochondria pathway. This study confirmed the hepatotoxicity of the polyphyllin II in vitro, which has never been discovered and gave a wake-up call for the clinical application of Rhizoma Paridis.  相似文献   
999.
The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of metabolism and cell growth. Among the numerous extracellular and intracellular signals, certain amino acids activate mTORC1 in a Rag-dependent manner. Arginine can stimulate mTORC1 activity by releasing the inhibitor CASTOR1 (Cellular Arginine Sensor of mTORC1) from GATOR2, a positive regulator of mTORC1 which interacts with GATOR1, the GAP for RagA/B. Three groups have resolved the structures of arginine-CASTOR1 complex, shedding a new light on molecular basis of the regulation of mTORC1 activity by arginine. However, lacking the apo structure of CASTOR1 prelimited the molecular understanding of mechanism underlying mTORC1 regulation. Here, we report crystal structures of arginine sensor CASTOR1 in arginine-bound and ligand free states at 2.05?Å and 2.8?Å, respectively. Structural comparison of CASTOR1 between two states reveals near identical conformations, except in two loop regions. It indicates CASTOR1 does not undergo large conformational change during arginine binding. Therefore, we conclude a detailed structural interpretation of arginine sensing by CASTOR1 in mTORC1 pathway.  相似文献   
1000.
One major challenge in the bioconversion of lignocelluloses into ethanol is to develop Saccharomyces cerevisiae strains that can utilize all available sugars in biomass hydrolysates, especially the d -xylose and l -arabinose that cannot be fermented by the S. cerevisiae strain naturally. Here, we integrated an l -arabinose utilization cassette (AUC) into the genome of an efficient d -xylose fermenting industrial diploid S. cerevisiae strain CIBTS0735 to make strain CIBTS1972. After evolving on arabinose, CIBTS1974 with excellent fermentation capacity was obtained. A comparison between genome sequences of strains CIBTS1974 and CIBTS1972 revealed that the copy number of the AUC had increased from 1 to 12. We then constructed the AUC null-mutant CIBTS1975 and gradually rescued the l -arabinose utilization defect by integrating AUC iteratively. On the other hand, the parental strain CIBTS0735 was able to acquire the same performance as CIBTS1974 by the direct introduction of 12 copies of the AUC; the performance was further improved by adding two more copies. Besides, we found that not the two transporters present in the AUC were both needed during l -arabinose utilization, GAL2 was necessary and STP2 was not essential. We have described for the first time that a high copy number of AUC is sufficient for the strain to metabolize l -arabinose efficiently independent of evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号