首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15163篇
  免费   1177篇
  国内免费   1122篇
  2024年   20篇
  2023年   158篇
  2022年   423篇
  2021年   827篇
  2020年   495篇
  2019年   605篇
  2018年   641篇
  2017年   530篇
  2016年   640篇
  2015年   916篇
  2014年   1090篇
  2013年   1228篇
  2012年   1425篇
  2011年   1272篇
  2010年   789篇
  2009年   697篇
  2008年   761篇
  2007年   631篇
  2006年   615篇
  2005年   491篇
  2004年   432篇
  2003年   340篇
  2002年   349篇
  2001年   313篇
  2000年   255篇
  1999年   253篇
  1998年   166篇
  1997年   130篇
  1996年   133篇
  1995年   125篇
  1994年   138篇
  1993年   92篇
  1992年   96篇
  1991年   71篇
  1990年   66篇
  1989年   58篇
  1988年   56篇
  1987年   31篇
  1986年   33篇
  1985年   19篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The 1.9 A X-ray structure of a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis is reported. This enzyme, MurG, contains two alpha/beta open sheet domains separated by a deep cleft. Structural analysis suggests that the C-terminal domain contains the UDP-GlcNAc binding site while the N-terminal domain contains the acceptor binding site and likely membrane association site. Combined with sequence data from other MurG homologs, this structure provides insight into the residues that are important in substrate binding and catalysis. We have also noted that a conserved region found in many UDP-sugar transferases maps to a beta/alpha/beta/alpha supersecondary structural motif in the donor binding region of MurG, an observation that may be helpful in glycosyltransferase structure prediction. The identification of a conserved structural motif involved in donor binding in different UDP-sugar transferases also suggests that it may be possible to identify--and perhaps alter--the residues that help determine donor specificity.  相似文献   
962.
Rabbit liver Pt7MT, Zn7MT, Bi7MT were reconstituted and the kinetic studies of the reactions with electrophilic disulphide 5, 5-dithiobis-(2-nitrobenzoic acid) (DTNB) were investigated to explore the possible mechanism of metals release from metallothioneins. It is revealed that the Pt7MT, Zn7MT react with DTNB biphasically, yielding a four-term rate law: Rate = k 1f [MT]+k 2f [DTNB][MT]+k 1s [MT]+k 2s [DTNB][MT]. Zn7MT reacts with disulphide DTNB more rapidly and has significantly greater observed rate constants k s, k f than Pt7MT. The kinetic data for Bi7MT indicate that the reaction is monophasic and the rate law is proved to be: Rate = k 1 [MT]+k 2 [DTNB][MT]. The observed pseudo-first order rate constants for above MTs are insensitive to pH value. Based on the available experimental data, the different kinetic behaviors of MTs reactions with electrophilic disulphide DTNB and a possible mechanism to release the coordinated metal ions are discussed.  相似文献   
963.
When human platelets are chilled below 22 degrees C, they spontaneously activate, a phenomenon that severely limits their storage life. It has previously been proposed that there is a correlation between cold-induced platelet activation and passage of the membranes through a liquid-crystalline to gel phase transition. Because animal models are essential for developing methods for cold storage of platelets, it is necessary to investigate such a correlation in animal platelets. In this work, horse platelets were used as a model, and it was found that cold-induced morphological activation is related to the lipid phase transition. Using fluorescence microscopy with the lipophilic fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (Dil-C18), and Fourier transform infrared spectroscopy (FTIR), it was found that lipid phase separation occurs during cooling and low temperature storage. Furthermore, removal of cholesterol from the plasma membrane also induced a phase separation, possibly between specific phospholipid classes. Steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and trimethylammonium-DPH (TMA-DPH) were compared in cells and multilamellar vesicles (MLV) composed of platelet lipids. Cholesterol depletion led to a decrease in the fluorescence anisotropy of the two probes, which can be explained by changes in the order of the phospholipid molecules. In addition, the lipid composition and fatty acid profile of the cellular phospholipids were determined. Based of the similarities between horse and human platelets, it is suggested that horse platelets may be used as a model for studying cold-stored platelets. The results are discussed in relation to the possible role of phase separation during cell signalling.  相似文献   
964.
奥得福尔制剂的药效学研究与临床   总被引:5,自引:0,他引:5  
对奥得福尔制剂的药效学定量杀菌试验、抗病毒试验及临床应用的结果表明: 得福尔制剂原液,1:1稀释液及1:5稀释液对大肠杆菌、金黄色葡萄球菌和白色念珠菌作用10min,杀灭率均可达99.9%以上;消毒液放置室温下稳定,有机物的存在对杀灭作用有轻度影响,但杀灭率仍可达99.9%以上;体外抗病毒试验结果表明,该制剂的主要抗病毒功效成分-黄精多糖,对单纯疱疹病毒的空斑抑制率达到100%;稳定性试验表明,该  相似文献   
965.
Ishitani M  Liu J  Halfter U  Kim CS  Shi W  Zhu JK 《The Plant cell》2000,12(9):1667-1678
The salt tolerance gene SOS3 (for salt overly sensitive3) of Arabidopsis is predicted to encode a calcium binding protein with an N-myristoylation signature sequence. Here, we examine the myristoylation and calcium binding properties of SOS3 and their functional significance in plant tolerance to salt. Treatment of young Arabidopsis seedlings with the myristoylation inhibitor 2-hydroxymyristic acid caused the swelling of root tips, mimicking the phenotype of the salt-hypersensitive mutant sos3-1. In vitro translation assays with reticulocyte showed that the SOS3 protein was myristoylated. Targeted mutagenesis of the N-terminal glycine-2 to alanine prevented the myristoylation of SOS3. The functional significance of SOS3 myristoylation was examined by expressing the wild-type myristoylated SOS3 and the mutated nonmyristoylated SOS3 in the sos3-1 mutant. Expression of the myristoylated but not the nonmyristoylated SOS3 complemented the salt-hypersensitive phenotype of sos3-1 plants. No significant difference in membrane association was observed between the myristoylated and nonmyristoylated SOS3. Gel mobility shift and (45)Ca(2)+ overlay assays demonstrated that SOS3 is a unique calcium binding protein and that the sos3-1 mutation substantially reduced the capacity of SOS3 to bind calcium. The resulting mutant SOS3 protein was not able to interact with the SOS2 protein kinase and was less capable of activating it. Together, these results strongly suggest that both N-myristoylation and calcium binding are required for SOS3 function in plant salt tolerance.  相似文献   
966.
All biological organisms have developed a defense system against oxidative stress, which is comprised of many kinds of antioxidants. Antioxidants are classified by function into four categories; preventive antioxidants; radical scavenging antioxidants; repair and de novo antioxidants; and adaptation. Radical scavenging antioxidants have the greatest advantage. Although the activities of radical scavenging antioxidant are determined by several factors, their chemical structure is of key importance. Furthermore, radical scavenging antioxidants have been explored to have a novel function by which they regulate gene expression of cell.  相似文献   
967.
Helicobacter pylori is causally associated with gastritis and gastric cancer. Some developing countries with a high prevalence of infection have high gastric cancer rates, whereas in others, these rates are low. The progression of helicobacter-induced gastritis and gastric atrophy mediated by type 1 T-helper cells may be modulated by concurrent parasitic infection. Here, in mice with concurrent helminth infection, helicobacter-associated gastric atrophy was reduced considerably despite chronic inflammation and high helicobacter colonization. This correlated with a substantial reduction in mRNA for cytokines and chemokines associated with a gastric inflammatory response of type 1 T-helper cells. Thus, concurrent enteric helminth infection can attenuate gastric atrophy, a premalignant lesion.  相似文献   
968.
We tested the hypothesis that hypotension occurred in older adults at the onset of orthostatic challenge as a result of vagal dysfunction. Responses of heart rate (HR) and mean arterial pressure (MAP) were compared between 10 healthy older and younger adults during onset and sustained lower body negative pressure (LBNP). A younger group was also assessed after blockade of the parasympathetic nervous system with the use of atropine or glycopyrrolate and after blockade of the beta(1)-adrenoceptor by use of metoprolol. Baseline HR (older vs. younger: 59 +/- 4 vs. 54 +/- 1 beats/min) and MAP (83 +/- 2 vs. 89 +/- 3 mmHg) were not significantly different between the groups. During -40 Torr, significant tachycardia occurred at the first HR response in the younger subjects without hypotension, whereas significant hypotension [change in MAP (DeltaMAP) -7 +/- 2 mmHg] was observed in the elderly without tachycardia. After the parasympathetic blockade, tachycardiac responses of younger subjects were diminished and associated with a significant hypotension at the onset of LBNP. However, MAP was not affected after the cardiac sympathetic blockade. We concluded that the elderly experienced orthostatic hypotension at the onset of orthostatic challenge because of a diminished HR response. However, an augmented vasoconstriction helped with the maintenance of their blood pressure during sustained LBNP.  相似文献   
969.
Control of the foodborne pathogens Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes during sufu fermentation was evaluated. Before fermentation, pathogens were inoculated onto tofu (substrate for sufu) at 5 log cfu/g or 3 log cfu/g, and starter culture (Actinomucor elegans) was inoculated at 3 log cfu/g. After 2 days of fermentation at 30 degrees C, the four pathogens reached 7 to 9 log cfu/g, and the mold count reached 6 to 7 log cfu/g. After fermentation, sufu samples were aged in a solution of 10% alcohol + 12% NaCl. After 1 month of aging, the total bacterial count was 6 to 7 log cfu/g, but all foodborne pathogens and mold were reduced to nondetectable levels. The total bacterial count decreased after aging for 2 months and 3 months, but the differences were not significant (P > 0.05) compared with the count after 1 month. Microorganism in experimental sufu from different aging periods and in commercial sufu were compared. A total of 270 isolates were purified and identified by the BBL Crystal Identification System. From the experimental sufu samples, 49 Bacillus spp. (20.4%), 167 Enterococcus spp. (69.6%), 6 Shewanella putrefaciens (2.4%), and 18 miscellaneous gram-negative bacilli (7.5%) were identified. From commercial sufu samples, 17 Bacillus spp. (56.7%), 2 Enterococcus durans (6.7%), 5 miscellaneous gram-negative bacilli (16.7%), 5 Corynbacterium aquaticum (16.7%), and 1 Shewanella putrefaciens (3.3%) were obtained. Although the longer aging period did not significantly decrease the total bacterial count, it may help in the development of sufu flavor. This study showed that sufu fermentation and aging can control common foodborne pathogens, so sufu is a safe product even though its preparation does not include pasteurization.  相似文献   
970.
Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does exhibit a physical quenching rate constant with singlet oxygen almost twice as high as that of beta-carotene. This makes its presence in the diet of considerable interest. Increasing clinical evidence supports the role of lycopene as a micronutrient with important health benefits, because it appears to provide protection against a broad range of epithelial cancers. Tomatoes and related tomato products are the major source of lycopene compounds, and are also considered an important source of carotenoids in the human diet. Undesirable degradation of lycopene not only affects the sensory quality of the final products, but also the health benefit of tomato-based foods for the human body. Lycopene in fresh tomato fruits occurs essentially in the all-trans configuration. The main causes of tomato lycopene degradation during processing are isomerization and oxidation. Isomerization converts all-trans isomers to cis-isomers due to additional energy input and results in an unstable, energy-rich station. Determination of the degree of lycopene isomerization during processing would provide a measure of the potential health benefits of tomato-based foods. Thermal processing (bleaching, retorting, and freezing processes) generally cause some loss of lycopene in tomato-based foods. Heat induces isomerization of the all-trans to cis forms. The cis-isomers increase with temperature and processing time. In general, dehydrated and powdered tomatoes have poor lycopene stability unless carefully processed and promptly placed in a hermetically sealed and inert atmosphere for storage. A significant increase in the cis-isomers with a simultaneous decrease in the all-trans isomers can be observed in the dehydrated tomato samples using the different dehydration methods. Frozen foods and heat-sterilized foods exhibit excellent lycopene stability throughout their normal temperature storage shelf life. Lycopene bioavailability (absorption) can be influenced by many factors. The bioavailability of cis-isomers in food is higher than that of all-trans isomers. Lycopene bioavailability in processed tomato products is higher than in unprocessed fresh tomatoes. The composition and structure of the food also have an impact on the bioavailability of lycopene and may affect the release of lycopene from the tomato tissue matrix. Food processing may improve lycopene bioavailability by breaking down cell walls, which weakens the bonding forces between lycopene and tissue matrix, thus making lycopene more accessible and enhancing the cis-isomerization. More information on lycopene bioavailability, however, is needed. The pharmacokinetic properties of lycopene remain particularly poorly understood. Further research on the bioavalability, pharmacology, biochemistry, and physiology must be done to reveal the mechanism of lycopene in human diet, and the in vivo metabolism of lycopene. Consumer demand for healthy food products provides an opportunity to develop lycopene-rich food as new functional foods, as well as food-grade and pharmaceutical-grade lycopene as new nutraceutical products. An industrial scale, environmentally friendly lycopene extraction and purification procedure with minimal loss of bioactivities is highly desirable for the foods, feed, cosmetic, and pharmaceutical industries. High-quality lycopene products that meet food safety regulations will offer potential benefits to the food industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号