首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25501篇
  免费   2107篇
  国内免费   2100篇
  29708篇
  2024年   66篇
  2023年   351篇
  2022年   802篇
  2021年   1330篇
  2020年   866篇
  2019年   1056篇
  2018年   1001篇
  2017年   742篇
  2016年   1054篇
  2015年   1553篇
  2014年   1829篇
  2013年   1934篇
  2012年   2364篇
  2011年   2022篇
  2010年   1283篇
  2009年   1024篇
  2008年   1392篇
  2007年   1167篇
  2006年   1055篇
  2005年   897篇
  2004年   746篇
  2003年   637篇
  2002年   581篇
  2001年   491篇
  2000年   378篇
  1999年   430篇
  1998年   256篇
  1997年   218篇
  1996年   255篇
  1995年   205篇
  1994年   252篇
  1993年   152篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   39篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
【目的】为了探讨ompR基因在肠炎沙门氏菌生物被膜形成及毒力中的作用。【方法】以肠炎沙门氏菌作为母本,运用自杀性载体pGMB151构建了ompR基因缺失株,结晶紫染色法和扫描电镜观察测定缺失株的生物被膜形成能力,细胞的吸附和侵入及小鼠攻毒试验测定缺失株的毒力。【结果】RT-PCR和蛋白表达证明了ompR基因缺失株构建成功;该缺失株不表达纤维素和菌毛,不形成生物被膜;上皮细胞吸附和侵入试验表明缺失株与野生株具有相同的吸附和侵入率;BALB/c鼠腹腔感染性试验表明,缺失株的半数致死量为106.67CFU,而野生株的半数致死量小于2 CFU。【结论】ompR基因既是肠炎沙门氏菌生物膜形成的调控基因,又是重要的毒力基因。  相似文献   
992.
The BCR–ABL fusion gene in chromosome translocation, t (9; 22), and its product, p210BCR/ABL oncogenic tyrosine kinase, is the underlying molecular mechanism that leads to the development of CML. Quantitative detection of BCR–ABL fusion gene has become a reliable approach to diagnose and monitor CML. The aim of this study was to evaluate a Roche t (9; 22) kit in CML diagnosis, monitoring treatment responses, and identification of relapse. Using BCR–ABL fusion gene-expressing K562 cells, a series of standard samples were prepared and used to establish a curve for the calculation of BCR–ABL fusion gene expression in patient samples. Our results indicate that PCR detection system with aforementioned kit has good reproducibility. In addition, the relative concentration of BCR–ABL measured by PCR was in agreement with the patient’s response to the Imatinib treatment and bone marrow morphology remission. Furthermore, we found that the relative concentration of BCR–ABL fusion gene increased 1–3 months before CML relapse was clinically and cytogenetically diagnosed, suggesting that the PCR-based BCR–ABL fusion gene detection with t (9; 22) kit is able to diagnose the recurrence of CML at least 1 month earlier than the classic cytogenetic analysis. In conclusion, detection of BCR–ABL fusion gene expression in CML using Roche t (9; 22) kit has great clinical value in the primary diagnosis, monitoring treatment responses, and identification of relapse in CML patients.  相似文献   
993.
Pan Y  Yang X  Duan J  Lu N  Leung AS  Tran V  Hu Y  Wu N  Liu D  Wang Z  Yu X  Chen C  Zhang Y  Wan K  Liu J  Zhu B 《Journal of bacteriology》2011,193(12):3152-3153
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only vaccine available against tuberculosis (TB). A number of BCG strains are in use, and they exhibit biochemical and genetic differences. We report the genome sequences of four BCG strains representing different lineages, which will help to design more effective TB vaccines.  相似文献   
994.
995.
NAD+ (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD+ metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD+ metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD+-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD+ metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD+ precursors. Together, our studies provide a molecular basis for how NAD+ homeostasis factors confer metabolic flexibility.The pyridine nucleotide NAD+ and its reduced form NADH are primary redox carriers involved in metabolism. In addition to serving as a coenzyme in redox reactions, NAD+ also acts as a cosubstrate in protein modification reactions including deacetylation and ADP-ribosylation (1, 2). NAD+ also plays an important role in calorie restriction (CR)2-mediated life span extension via regulating NAD+-dependent longevity factors (3, 4). CR is the most effective regimen known to extend life span in various species (5, 6). CR also ameliorates many age-related diseases such as cancer and diabetes (5). The Sir2 family proteins are NAD+-dependent protein deacetylases, which have been shown to play important roles in several CR models in yeast (3, 7) and higher eukaryotes (8, 9). By coupling the cleavage of NAD+ and deacetylation of target proteins, the Sir2 family proteins serve as a molecular link relaying the cellular energy state to the machinery of life span regulation. Mammalian Sir2 family proteins (SIRT1–7) have also been implicated in stress response, cell survival, and insulin and fat metabolism (810), supporting a role for SIRT proteins in age-related metabolic diseases and perhaps human aging.In eukaryotes, NAD+ is generated by de novo synthesis and by salvaging various intermediary precursors (see Fig. 1A). In yeast, the de novo pathway is mediated by Bna1–5 and Qpt1 (Bna6), which produces nicotinic acid mononucleotide (NaMN) from tryptophan (11). Because the de novo pathway requires molecular oxygen as a substrate, cells grown under anaerobic growth conditions would rely on exogenous NAD+ precursors for the nicotinamide (Nam) moiety (11). Yeast cells also salvage Nam from NAD+ consuming reactions or nicotinic acid (NA) from environment via Tna1, Pnc1, and Npt1, leading to NaMN production. NaMN is then converted to NAD+ via Nma1/2 and Qns1 (see Fig. 1A). Nma1/2 are adenylyltransferases with dual specificity toward NMN and NaMN (12, 13), and Qns1 is a glutamine-dependent NAD+ synthetase. Recent studies also showed that supplementing nicotinamide riboside (NmR) and nicotinic acid riboside (NaR) to growth medium rescued the lethality of NAD+ auxotrophic mutants (1416). Assimilations of exogenous NmR and NaR are mainly mediated by a conserved NmR kinase (Nrk1) and three nucleosidases (Urh1, Pnp1, and Meu1). Nrk1 phosphorylates NmR and NaR to produce nicotinamide mononucleotide (NMN) and NaMN, respectively (14, 16). Urh1, Pnp1, and Meu1 catabolize NmR and NaR to generate Nam and NA (15, 16).Open in a separate windowFIGURE 1.Nicotinamide riboside (NmR) is an endogenous metabolite in yeast. A, the current model of the NAD+ biosynthesis pathways. Extracellular NmR enters the salvage cycle through Nrk1, Urh1, Pnp1, and Meu1. B, NAD+ prototrophic cells release metabolites into growth medium to cross-feed NAD+ auxotrophic cells (the npt1Δqpt1Δ and qns1Δ mutants). Micro-colonies of the NAD+ auxotrophic mutants become visible after 2-day incubation at 30 °C, which show “gradient” growth patterns descending from the side adjacent to WT. C, Nrk1 is required for NAD+ auxotrophic cells to utilize NmR. Anaerobic growth conditions (−O2) are utilized to block de novo NAD+ biosynthesis in the npt1Δ and npt1Δnrk1Δ mutants. D, Nrk1 is required to utilize cross-feeding metabolites. E, cross-feeding activity is modulated by factors in NmR metabolism. Cells defective in NmR utilization (left panel) or transport (middle panel) show increased cross-feeding in spot assays. Overexpressing Nrk1 decreases cross-feeding activity (right panel). The results show growth of the npt1Δqpt1Δ recipient (plated on YPD at a density of ∼9000 cells/cm2) supported by feeder cells (∼2 × 104 cells spotted directly onto the recipient lawn). oe, overexpression.NmR supplementation has recently been shown to be a promising strategy for prevention and treatment of certain diseases (17). For example, NmR protected neurons from axonal degeneration via functioning as a NAD+ precursor (18, 19). Given that several NmR assimilating enzymes and NmR transporters have been characterized and many are conserved from fungi to mammals (14, 15, 2022), NmR has been speculated to be an endogenous NAD+ precursor (17, 23). Here, we provided direct evidence for endogenous NmR as an integral part of NAD+ metabolism in yeast. We also determined the biological significance of salvaging endogenous NmR and studied its role in CR-induced life span extension. Moreover, we demonstrated that the NmR salvage machinery was also required for utilizing exogenous NMN, which has recently been shown to increase NAD+ levels in mammalian cells (24). Finally, we discussed the role of Sir2 in modulating the flux of pyridine nucleotides between alternate routes.  相似文献   
996.
A small basic peptide with an unusual amino acid composition has been isolated from the seeds of pumpkin, Cucurbita maxima. Amino acid analysis and sequence data show the protein to be about 36 residues in length, with an approximate composition Lys1, Arg14, Asp3, (Glu + Gln)15, Gly1, Pro1, Trp1. On the basis of composition, the molecular weight is approximately 5000 daltons and the nitrogen content by weight is 20.4%. Twelve amino acids are entirely lacking. The peptide is slightly toxic to mouse B-16 melanoma cells, but its in vivo function is unknown. It does not appear to be derived from cucurbitin, the pumpkin storage globulin; however, it could be a storage peptide involved in nitrogen mobilization during the early stages of germination.  相似文献   
997.
998.
999.
A new high-alkaline protease (ALTP) was purified to homogeneity from a culture of the strictly anaerobic and extremely alkaliphilic Alkaliphilus transvaalensis. The molecular mass was 30 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The enzyme showed the maximal caseinolytic activity higher than pH 12.6 in KCl–NaOH buffer at 40°C. Hydrolysis of the oxidized insulin B-chain followed by mass spectrometric analysis of the cleaved products revealed that as many as 24 of the total 29 peptide bonds are hydrolyzed in a block-cutting manner, suggesting that ALTP has a widespread proteolytic functions. Calcium ion had no effect on the activity and stability of ALTP, unlike known subtilisins. The deduced amino acid sequence of the enzyme comprised 279 amino acids plus 97 prepropeptide amino acids. The amino acid sequence of mature ALTP was confirmed by capillary liquid chromatography coupled to tandem mass spectrometry, which was the 93% coverage of the deduced amino acid sequence. The mature enzyme showed moderate homology to subtilisin LD1 from the alkaliphilic Bacillus sp. strain KSM-LD1 with 64% identity, and both enzymes formed a new subcluster at an intermediate position among true subtilisins and high-alkaline proteases in a phylogenetic tree of subtilase family A. ALTP is the first high-alkaline protease reported from a strict anaerobe in this family.  相似文献   
1000.
Riparian wetlands are important components of the lake ecosystem, and they play essential roles in maintaining system health. Remediation of degraded lakeshore wetlands is an essential component of lake restoration. A study was conducted to investigate the restoration of lakeshore wetlands, which were converted to rice fields and then abandoned for 2, 5, 10 and 15 years, near Lake Taihu. Soil samples (0–20 cm and 20–40 cm) were taken and plant species were investigated. The carbon content in the soil had increased significantly, rising from 0.71% to 1.85% between 2 and 15 years. Organic matter accumulation improved soil texture, and water stable aggregate content (>0.25 mm) and soil porosity increased. Total nitrogen in the soil increased from 0.06% to 0.13%, and total Kjeldahl nitrogen increased from 124.4 mg kg−1 to 351.5 mg kg−1. Total phosphorus in the soil increased from 0.045% to 0.071%, and the Olsen-P value increased from 5.13 mg kg−1 to 16.0 mg kg−1. Results showed that phosphorous did not increase as much as nitrogen. In the vegetation restoration process, plant species composition moved towards a natural wetland community, and spatial heterogeneity and landscape diversity increased. The richness of plant biodiversity increased rapidly in the first 2 years, then more slowly in later restoration stages. The wetlands recovery process may be complicated by interactions of biota and soil and hydrological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号