首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2400篇
  免费   214篇
  国内免费   8篇
  2622篇
  2022年   20篇
  2021年   38篇
  2020年   20篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   57篇
  2015年   116篇
  2014年   123篇
  2013年   142篇
  2012年   213篇
  2011年   160篇
  2010年   97篇
  2009年   82篇
  2008年   118篇
  2007年   119篇
  2006年   127篇
  2005年   94篇
  2004年   98篇
  2003年   88篇
  2002年   68篇
  2001年   73篇
  2000年   59篇
  1999年   73篇
  1998年   28篇
  1997年   22篇
  1996年   12篇
  1995年   13篇
  1994年   19篇
  1993年   15篇
  1992年   34篇
  1991年   38篇
  1990年   31篇
  1989年   20篇
  1988年   21篇
  1987年   22篇
  1986年   26篇
  1985年   26篇
  1984年   13篇
  1983年   19篇
  1982年   19篇
  1981年   14篇
  1980年   16篇
  1979年   20篇
  1978年   18篇
  1976年   17篇
  1975年   15篇
  1974年   11篇
  1973年   15篇
  1972年   13篇
排序方式: 共有2622条查询结果,搜索用时 15 毫秒
991.
Jean L  Lee CF  Vaux DJ 《Biophysical journal》2012,102(5):1154-1162
The aggregation of proteins or peptides into amyloid fibrils is a hallmark of protein misfolding diseases (e.g., Alzheimer's disease) and is under intense investigation. Many of the experiments performed are in vitro in nature and the samples under study are ordinarily exposed to diverse interfaces, e.g., the container wall and air. This naturally raises the question of how important interfacial effects are to amyloidogenesis. Indeed, it has already been recognized that many amyloid-forming peptides are surface-active. Moreover, it has recently been demonstrated that the presence of a hydrophobic interface can promote amyloid fibrillization, although the underlying mechanism is still unclear. Here, we combine theory, surface property measurements, and amyloid fibrillogenesis assays on islet amyloid polypeptide and amyloid-β peptide to demonstrate why, at experimentally relevant concentrations, the surface activity of the amyloid-forming peptides leads to enriched fibrillization at an air-water interface. Our findings indicate that the key that links these two seemingly different phenomena is the surface-active nature of the amyloid-forming species, which renders the surface concentration much higher than the corresponding critical fibrillar concentration. This subsequently leads to a substantial increase in fibrillization.  相似文献   
992.

Background

Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH). Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death.

Methods

Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis) increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline) or poly (ADP-ribose) polymerase (PARP) inhibitors [3-aminobenzamide (3-AB) and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF) translocation to the nucleus, while PARP inhibitors (3-AB) reduced this ratio.

Results

According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus.

Conclusions

We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.  相似文献   
993.
N T Parkin  P Chiu    K Coelingh 《Journal of virology》1997,71(4):2772-2778
We have generated new influenza A virus live attenuated vaccine candidates by site-directed mutagenesis and reverse genetics. By mutating specific amino acids in the PB2 polymerase subunit, two temperature-sensitive (ts) attenuated viruses were obtained. Both candidates have 38 degrees C shutoff temperatures in MDCK cells, are attenuated in the respiratory tracts of mice and ferrets, and have very low reactogenicity in ferrets. Infection of mice or ferrets with either mutant conferred significant protection from challenge with the homologous wild-type virus. Three tests for genetic stability were used to assess the propensity for reversion to virulence: 14 days of replication in nude mice, growth at 37 degrees C in tissue culture, and serial passage in ferrets. One candidate, which contains mutations intended to reduce the ability of PB2 to bind to cap structures, was stable in all three assays, whereas the second candidate, which contains mutations found only in other ts strains of influenza virus, lost its ts phenotype in the last two assays. This approach has therefore enabled the creation of live attenuated influenza A virus vaccine candidates suitable for human testing.  相似文献   
994.
Tuning the donor–acceptor (D–A) weight ratio is an essential step to optimize the performance of a bulk heterojunction (BHJ) solar cell. The unoptimized regime with a low acceptor concentration is generally unexplored despite it may reveal the early stage electronic D–A interactions. In this study, PTB7:PC71BM is used to examine factors that limit the device performance in unoptimized regime. The key limiting factor is the creation of traps and localized states originated from fullerene molecules. Photothermal deflection spectroscopy is used to quantify the trap density. Starting with pristine PTB7, addition of small concentration of fullerene increases the electron trap density and lowers the electron mobility. When the D–A weight ratio reaches 1:0.1, fullerene percolation occurs. There is an abrupt drop in trap density and simultaneously a six orders of magnitude increase in the electron mobility. Furthermore, the fill factors of the corresponding photovoltaic devices are found to anticorrelate with the trap density. This study reveals that electron trapping is the key limiting factor for unoptimized BHJ solar cells in low fullerene regime.  相似文献   
995.

Background  

Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism.  相似文献   
996.
Objectives: For reasons of provision of highly‐specific surface area and three‐dimensional culture, microcarrier culture (MC) has garnered great interest for its potential to expand anchorage‐dependent stem cells. This study utilizes MC for in vitro expansion of human bone marrow mesenchymal stem cells (BMMSCs) and analyses its effects on BMMSC proliferation and differentiation. Materials and methods: Effects of semi‐continuous MC compared to control plate culture (PC) and serial bead‐to‐bead transfer MC (MC bead‐T) on human BMMSCs were investigated. Cell population growth kinetics, cell phenotypes and differentiation potential of cells were assayed. Results: Maximum cell density and overall fold increase in cell population growth were similar between PCs and MCs with similar starting conditions, but lag period of BMMSC growth differed substantially between the two; moreover, MC cells exhibited reduced granularity and higher CXCR4 expression. Differentiation of BMMSCs into osteogenic and adipogenic lineages was enhanced after 3 days in MC. However, MC bead‐T resulted in changes in cell granularity and lower osteogenic and adipogenic differentiation potential. Conclusions: In comparison to PC, MC supported expansion of BMMSCs in an up‐scalable three‐dimensional culture system using a semi‐continuous process, increasing potential for stem cell homing ability and osteogenic and adipogenic differentiation.  相似文献   
997.
Ho YS  Yang X  Yeung SC  Chiu K  Lau CF  Tsang AW  Mak JC  Chang RC 《PloS one》2012,7(5):e36752
Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.  相似文献   
998.
We report a 23- gene-classifier profiled from Asian women, with the primary purpose of assessing its clinical utility towards improved risk stratification for relapse for breast cancer patients from Asian cohorts within 10 years’ following mastectomy. Four hundred and twenty-two breast cancer patients underwent mastectomy and were used to train the classifier on a logistic regression model. A subset of 197 patients were chosen to be entered into the follow-up studies post mastectomy who were examined to determine the patterns of recurrence and survival analysis based on gene expression of the gene classifier, age at diagnosis, tumor stage and lymph node status, over a 5 and 10 years follow-up period. Metastasis to lymph node (N2-N3) with N0 as the reference (N2 vs. N0 hazard ratio: 2.02 (1.05–8.70), N3 vs. N0 hazard ratio: 4.32 (1.41–13.22) for 5 years) and gene expression of the 23-gene panel (P=0.06, 5 years and 0.02, 10 years, log-rank test) were found to have significant discriminatory effects on the risk of relapse (HR (95%CI):2.50 (0.95–6.50)). Furthermore, survival curves for subgroup analysis with N0-N1 and T1-T2 predicted patients with higher risk scores. The study provides robust evidence of the effectiveness of the 23-gene-classifier and could be used to determine the risk of relapse event (locoregional and distant recurrence) in Asian patients, leading to a meaningful reduction in chemotherapy recommendations.  相似文献   
999.
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.  相似文献   
1000.

Background

Chronic kidney disease (CKD) patients have higher prevalence of major adverse cardiovascular events (MACE) and all-cause mortality. Endothelial damage and dysfunction have been regarded as early portents of MACE in CKD patients. Angiopoietin-2 (Ang-2) impairs endothelial function and promotes aberrant neovascularization. The aim of the study was to assess the relationship between circulating Ang-2 and MACE or all-cause mortality in a CKD cohort.

Methods

A total of 621 pre-dialysis stage 3–5 CKD patients were enrolled from January 2006 to December 2011 and were followed up till October 2014. Plasma Ang-2 was measured in duplicate using commercial enzyme-linked immunosorbent assays (ELISA). Clinical outcomes included MACE or all-cause mortality

Results

Of all patients, 122 (19.8%) reached MACE or all-cause mortality. Seventy-two had MACE, 79 died, and 29 had both MACE and all-cause mortality during the follow-up period of 41.5±28.3 months. Ang-2 quintile was divided at 1405.0, 1730.0, 2160.9, and 2829.9 pg/ml. The adjusted HR of MACE or all-cause mortality for every single higher log Ang-2 was 5.69 (95% CI: 2.00–16.20, P = 0.001). The adjusted HR of MACE or all-cause mortality was 2.48 (95% CI: 1.25–4.90) for patients of quintile 5 compared with those of quintile 1. A longitudinal association between MACE or all-cause mortality and stepwise increases in Ang-2 levels was found (P-trend = 0.008).

Conclusions

Ang-2 is an independent predictor of MACE or all-cause mortality in CKD patients. Additional study is necessary in order to explore the mechanism of the association of Ang-2 with adverse outcomes in patients with CKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号