首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29681篇
  免费   2846篇
  国内免费   4625篇
  37152篇
  2024年   116篇
  2023年   440篇
  2022年   965篇
  2021年   1424篇
  2020年   1100篇
  2019年   1429篇
  2018年   1250篇
  2017年   954篇
  2016年   1218篇
  2015年   1970篇
  2014年   2262篇
  2013年   2336篇
  2012年   2956篇
  2011年   2708篇
  2010年   1795篇
  2009年   1626篇
  2008年   1915篇
  2007年   1714篇
  2006年   1560篇
  2005年   1317篇
  2004年   1116篇
  2003年   1088篇
  2002年   886篇
  2001年   493篇
  2000年   412篇
  1999年   416篇
  1998年   286篇
  1997年   229篇
  1996年   201篇
  1995年   140篇
  1994年   174篇
  1993年   91篇
  1992年   101篇
  1991年   79篇
  1990年   56篇
  1989年   50篇
  1988年   30篇
  1987年   47篇
  1986年   25篇
  1985年   45篇
  1984年   15篇
  1983年   19篇
  1982年   10篇
  1981年   9篇
  1979年   8篇
  1976年   7篇
  1974年   5篇
  1973年   7篇
  1972年   10篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Drought stress negatively impacts growth and physiological processes in plants. The foliar application of glycine betaine (GB) is an effective and low-cost approach to improve the drought tolerance of trees. This study examined the effect of exogenously applied GB on the cell membrane permeability, osmotic adjustment, and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress. Two levels (0 and 800 mL) of water irrigation were tested under different applied GB concentrations (0, 50, 100, and 200 mM). Drought stress decreased the relative water content by 58.5% while increased the electric conductivity, malondialdehyde, proline, soluble proteins, soluble sugars, and antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase) by up to 62.9%, 42.4%, 87.0%, 19.1%, 60.5%, 68.3%, 71.7%, and 83.8%, respectively, on the 25th day. The foliar application of GB, especially at 100 mM, increased the relative water content of P. hunanensis leaves under drought stress. The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products. Under drought stress, the concentrations of proline, soluble proteins, and soluble sugars in the leaves of P. hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged. Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application. Furthermore, the physiological and biochemical indexes of P. hunanensis showed a certain dose effect on exogenous GB concentration. These results suggest that GB helps maintain the drought tolerance of P. hunanensis.  相似文献   
62.
63.
Long-term use of antibiotics has engendered a large number of resistant pathogens, which pose a serious threat to human health. Here, we investigated the mechanism of fusaricidin antibacterial activity toward Bacillus subtilis and characterized the pathways responsible for drug resistance. We found that σw, an extracytoplasmic function sigma factor, plays an important role in the resistance to fusaricidins during the initial 5 minutes of drug addition. Approximately 18 genes were induced more than 3-fold, of which 66.7% are known to be regulated by σw. Over the following 3 h, fusaricidins induced 194 genes more than three-fold, and most were associated with classes of antibiotic-responsive stimulons. Moreover, the fusaricidin treatment increased the catabolism of fatty and amino acids but strongly repressed glucose decomposition and gluconeogenesis. In summary, our data provide insight into the mechanism of fusaricidin activity, on which we based our suggested strategies for the development of novel antibiotic agents.  相似文献   
64.
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity.  相似文献   
65.
66.
67.
Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation.  相似文献   
68.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
69.
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. As a central component in the complement system, complement component 3 (C3) is an intermediary between innate and adaptive immune system. In this study, a new isoform of C3 in the sea cucumber Apostichopus japonicus, termed AjC3-2 was identified. Its open reading frame (ORF) is 5085?bp and encodes for 1695 amino acids with a putative signal peptide of 20 amino acid residues. The mature protein molecular weight of AjC3-2 was 187.72?kDa. It has a conserved thioester site and a linker R(689)RRR(692) where AjC3-2 is splitted into β and α chain during posttranslational modification. The expression patterns of two distinct sea cucumber C3 genes, AjC3-2 and AjC3, were similar. During the different development stages from unfertilized egg to juvenile of the sea cucumber, the highest expression levels of AjC3-2 and AjC3 genes were both found in late auricularia. In the adult, the highest expression of these two genes was observed in the coelomocytes and followed by the body wall. AjC3-2 and AjC3 genes expression increased significantly at 6?h after the LPS challenge. These results indicated that these two C3 genes play a pivotal role in immune responses to the bacterial infection in sea cucumber.  相似文献   
70.
Within minutes after infecting Escherichia coli, bacteriophage T7 synthesizes many copies of its genomic DNA. The lynchpin of the T7 replication system is a bifunctional primase-helicase that unwinds duplex DNA at the replication fork while initiating the synthesis of Okazaki fragments on the lagging strand. We have determined a 3.45 A crystal structure of the T7 primase-helicase that shows an articulated arrangement of the primase and helicase sites. The crystallized primase-helicase is a heptamer with a crown-like shape, reflecting an intimate packing of helicase domains into a ring that is topped with loosely arrayed primase domains. This heptameric isoform can accommodate double-stranded DNA in its central channel, which nicely explains its recently described DNA remodeling activity. The double-jointed structure of the primase-helicase permits a free range of motion for the primase and helicase domains that suggests how the continuous unwinding of DNA at the replication fork can be periodically coupled to Okazaki fragment synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号