首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35112篇
  免费   3194篇
  国内免费   3907篇
  42213篇
  2024年   131篇
  2023年   546篇
  2022年   1090篇
  2021年   1751篇
  2020年   1268篇
  2019年   1566篇
  2018年   1569篇
  2017年   1098篇
  2016年   1498篇
  2015年   2307篇
  2014年   2648篇
  2013年   2758篇
  2012年   3385篇
  2011年   3018篇
  2010年   1989篇
  2009年   1683篇
  2008年   2006篇
  2007年   1695篇
  2006年   1530篇
  2005年   1300篇
  2004年   1131篇
  2003年   1054篇
  2002年   886篇
  2001年   568篇
  2000年   486篇
  1999年   506篇
  1998年   312篇
  1997年   237篇
  1996年   209篇
  1995年   212篇
  1994年   219篇
  1993年   139篇
  1992年   188篇
  1991年   150篇
  1990年   122篇
  1989年   92篇
  1988年   99篇
  1987年   78篇
  1986年   78篇
  1985年   87篇
  1984年   58篇
  1983年   42篇
  1982年   41篇
  1981年   32篇
  1979年   28篇
  1978年   24篇
  1977年   19篇
  1974年   24篇
  1973年   26篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   
132.
Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation.  相似文献   
133.
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. As a central component in the complement system, complement component 3 (C3) is an intermediary between innate and adaptive immune system. In this study, a new isoform of C3 in the sea cucumber Apostichopus japonicus, termed AjC3-2 was identified. Its open reading frame (ORF) is 5085?bp and encodes for 1695 amino acids with a putative signal peptide of 20 amino acid residues. The mature protein molecular weight of AjC3-2 was 187.72?kDa. It has a conserved thioester site and a linker R(689)RRR(692) where AjC3-2 is splitted into β and α chain during posttranslational modification. The expression patterns of two distinct sea cucumber C3 genes, AjC3-2 and AjC3, were similar. During the different development stages from unfertilized egg to juvenile of the sea cucumber, the highest expression levels of AjC3-2 and AjC3 genes were both found in late auricularia. In the adult, the highest expression of these two genes was observed in the coelomocytes and followed by the body wall. AjC3-2 and AjC3 genes expression increased significantly at 6?h after the LPS challenge. These results indicated that these two C3 genes play a pivotal role in immune responses to the bacterial infection in sea cucumber.  相似文献   
134.
Within minutes after infecting Escherichia coli, bacteriophage T7 synthesizes many copies of its genomic DNA. The lynchpin of the T7 replication system is a bifunctional primase-helicase that unwinds duplex DNA at the replication fork while initiating the synthesis of Okazaki fragments on the lagging strand. We have determined a 3.45 A crystal structure of the T7 primase-helicase that shows an articulated arrangement of the primase and helicase sites. The crystallized primase-helicase is a heptamer with a crown-like shape, reflecting an intimate packing of helicase domains into a ring that is topped with loosely arrayed primase domains. This heptameric isoform can accommodate double-stranded DNA in its central channel, which nicely explains its recently described DNA remodeling activity. The double-jointed structure of the primase-helicase permits a free range of motion for the primase and helicase domains that suggests how the continuous unwinding of DNA at the replication fork can be periodically coupled to Okazaki fragment synthesis.  相似文献   
135.
136.
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.  相似文献   
137.
Biosynthesis of flavonoid derivatives requires enzyme(s) having high reactivity as well as regioselectivity. We have synthesized 3-O-kaempferol from naringenin using two enzymes. The first reaction, in which naringenin is converted to kaempferol, is mediated by flavonol synthase (FLS). An FLS (PFLS) with strong catalytic activity was cloned and characterized from the genome sequence of the poplar (Populus deltoides). PFLS consists of a 1,008 bp ORF encoding a 38 kDa protein. PFLS was expressed in Escherichia coli with a glutathione-S-transferase (GST) tagging. The purified recombinant PFLS was characterized. Catalytically, it was more efficient than the previously characterized FLSs. A mixture of two E. coli transformants harboring either PFLS or ROMT9 (a kaempferol 3-O-methyltransferase) converted naringenin into 3-O-methylkaempferol.  相似文献   
138.
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号