全文获取类型
收费全文 | 49520篇 |
免费 | 17371篇 |
国内免费 | 3159篇 |
专业分类
70050篇 |
出版年
2024年 | 103篇 |
2023年 | 450篇 |
2022年 | 948篇 |
2021年 | 1738篇 |
2020年 | 3048篇 |
2019年 | 4776篇 |
2018年 | 4748篇 |
2017年 | 4759篇 |
2016年 | 5013篇 |
2015年 | 5592篇 |
2014年 | 5390篇 |
2013年 | 5991篇 |
2012年 | 4115篇 |
2011年 | 3557篇 |
2010年 | 4387篇 |
2009年 | 3051篇 |
2008年 | 2142篇 |
2007年 | 1543篇 |
2006年 | 1365篇 |
2005年 | 1211篇 |
2004年 | 1054篇 |
2003年 | 1021篇 |
2002年 | 866篇 |
2001年 | 661篇 |
2000年 | 506篇 |
1999年 | 469篇 |
1998年 | 252篇 |
1997年 | 172篇 |
1996年 | 159篇 |
1995年 | 132篇 |
1994年 | 146篇 |
1993年 | 99篇 |
1992年 | 118篇 |
1991年 | 80篇 |
1990年 | 67篇 |
1989年 | 54篇 |
1988年 | 43篇 |
1987年 | 46篇 |
1986年 | 37篇 |
1985年 | 42篇 |
1984年 | 19篇 |
1983年 | 20篇 |
1982年 | 15篇 |
1981年 | 9篇 |
1979年 | 6篇 |
1976年 | 4篇 |
1973年 | 3篇 |
1972年 | 4篇 |
1966年 | 2篇 |
1965年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
Brevipalpus obovatus Donnadieu is an important pest mite on tea plants in South China. In the current study, predatory mites of B. obovatus in the tea gardens of Guangzhou were extensively surveyed. In total, 13 species of predatory mites (four families with seven genera) were recorded. The population proportion of Amblyseius hainanensis Wu et Qian was the highest (68.6?%), followed by that of Anystis baccarum (L.) (8.4?%) and A. theae Wu (6.3?%). The effects of starvation time, habitat size and pest population density on the predatory efficiency of the most dominant species, A. hainanensis, feeding on B. obovatus were assessed. In addition, the effectiveness of artificial rainfall in reducing B. obovatus populations was evaluated. After starvation for 48?h, the predatory efficiency of A. hainanensis was significantly higher than those that had been starved for 24 or 72?h when 30-50 B. obovatus eggs were made available. The predation of A. hainanensis on B. obovatus also increased with increasing prey density. The number of prey attacked by A. hainanensis in a 3.2?cm(2) habitat was significantly higher than in a 6.3?cm(2) habitat. The average predation of A. hainanensis was 31.7 eggs per day when offered 100 B. obovatus eggs on a tea leaf. This decreased to 17.8 eggs per day when four A. hainanensis shared 100 B. obovatus eggs. B. obovatus populations can be reduced by artificial rainfall, with the reduction affected by rainfall intensity. With an intensity of 40?mm in 15?min, 90.2?% mortality of B. obovatus occurred; lower mortalities were recorded (13.3 and 29.8?%) when the intensity was 2 or 4?mm in 15?min. Combination of the predatory mite A. hainanensis and artificial rainfall for the integrated pest management of B. obovatus is discussed. 相似文献
112.
Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells (Adv. Energy Mater. 1/2016) 下载免费PDF全文
113.
Zhenwen Cui Zhihong Zhong Yong Yang Baofeng Wang Yuhao Sun Qingfang Sun Guo‐yuan Yang Liuguan Bian 《Journal of biochemical and molecular toxicology》2016,30(8):396-403
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity. 相似文献
114.
Characterization of phytoplankton assemblages in a tropical coastal environment using Kohonen self‐organizing map 下载免费PDF全文
Isimemen Osemwegie Julie E. Niamien‐Ebrottié Mathieu Y. J. Koné Allassane Ouattara Jean Biemi Barbara Reichert 《African Journal of Ecology》2017,55(4):487-499
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems. 相似文献
115.
Bo Cao Yanfeng Qi Yan Yang Xichun Liu Duo Xu Wei Guo Yang Zhan Zhenggang Xiong Allen Zhang Alun R. Wang Xueqi Fu Haitao Zhang Lijing Zhao Jingkai Gu Yan Dong 《PloS one》2014,9(11)
Castration-resistant progression of prostate cancer after androgen deprivation therapies remains the most critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor (AR) activity is an established driver of castration-resistant progression, and upregulation of the full-length AR (AR-FL) and constitutively-active AR splice variants (AR-Vs) has been implicated to contribute to the resurgent AR activity. We reported previously that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) can reduce the abundance of both AR-FL and AR-Vs. In the present study, we further showed that the effect of PPD on AR expression and target genes was independent of androgen. PPD treatment resulted in a suppression of ligand-independent AR transactivation. Moreover, PPD delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation and inhibited the growth of castration-resistant 22Rv1 xenograft tumors with endogenous expression of AR-FL and AR-Vs. This was accompanied by a decline in serum prostate-specific antigen levels as well as a decrease in AR levels and mitoses in the tumors. Notably, the 22Rv1 xenograft tumors were resistant to growth inhibition by the next-generation anti-androgen enzalutamide. The present study represents the first to show the preclinical efficacy of PPD in inhibiting castration-resistant progression and growth of prostate cancer. The findings provide a rationale for further developing PPD or its analogues for prostate cancer therapy. 相似文献
116.
117.
Zhi Qian Zeyuan Zhong Shuo Ni Dejian Li Fangxue Zhang Ying Zhou Zhanrong Kang Jun Qian Baoqing Yu 《Journal of cellular and molecular medicine》2020,24(17):10112-10127
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis. 相似文献
118.
Receptor-like kinases (RLKs) play important roles in multiple aspects of plant growth and development. As a member of the TNFR-like RLK subfamily, rice Crinkly4 (OsCR4) functions mainly in epidermal cell differentiation in many organs. Here we show that in addition to its essential role in epidermal cell differentiation in the palea and lemma, OsCR4 positively regulates rice culm elongation, similar to maize CR4. Although OsCR4 is an active kinase, like CR4 in maize and ACR4 in Arabidopsis, the conserved amino acid K532 in OsCR4 is not essential for its kinase activity in vitro. Whether other conserved amino acids are required for its kinase activity and the relationship between its activity and function in plant development remain to be investigated. 相似文献
119.
Ping Xu Yangxi Zheng Jiujiang Liao Mingyu Hu Yike Yang Baozhen Zhang Mark D. Kilby Huijia Fu Yamin Liu Fumei Zhang Liling Xiong Xiyao Liu Huili Jin Yue Wu Jiayu Huang Tingli Han Li Wen Rufei Gao Yong Fu Xiujun Fan Hongbo Qi Philip N. Baker Chao Tong 《Cell proliferation》2023,56(2)
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs. 相似文献
120.
Cecilia Andrésen Shah Jalal Daniel Aili Yi Wang Sohidul Islam Anngelica Jarl Bo Liedberg Bengt Wretlind Lars‐Göran Mårtensson Maria Sunnerhagen 《Protein science : a publication of the Protein Society》2010,19(4):680-692
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding. 相似文献