首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26686篇
  免费   2393篇
  国内免费   2928篇
  32007篇
  2024年   95篇
  2023年   394篇
  2022年   821篇
  2021年   1249篇
  2020年   936篇
  2019年   1164篇
  2018年   1105篇
  2017年   840篇
  2016年   1108篇
  2015年   1765篇
  2014年   1966篇
  2013年   2147篇
  2012年   2593篇
  2011年   2299篇
  2010年   1522篇
  2009年   1403篇
  2008年   1593篇
  2007年   1391篇
  2006年   1223篇
  2005年   1020篇
  2004年   913篇
  2003年   823篇
  2002年   693篇
  2001年   416篇
  2000年   375篇
  1999年   337篇
  1998年   231篇
  1997年   184篇
  1996年   172篇
  1995年   134篇
  1994年   149篇
  1993年   111篇
  1992年   131篇
  1991年   112篇
  1990年   86篇
  1989年   69篇
  1988年   55篇
  1987年   72篇
  1986年   46篇
  1985年   50篇
  1984年   30篇
  1983年   31篇
  1982年   18篇
  1981年   19篇
  1979年   16篇
  1978年   16篇
  1975年   8篇
  1974年   8篇
  1972年   16篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Intraspecific variation of four agamospecies ofHieracium sect.Alpina was studied using RAPD and isozyme techniques. No variation in either multiprimer RAPD or multi-enzyme phenotypes was observed withinH. holosericeum, suggesting that this widespread species consists of only a single genotype. A low level of within-population isozyme variation was seen inH. tenuifrons andH. calenduliflorum, the origin of which appears to be consistent with somatic mutation. Most isozyme and all RAPD variation in these two species was partitioned between populations. A strong correlation with geography suggests that its cause may be due to polytopic (-polyphyletic?) origin or perhaps to mutation and dispersal. The most variable species wasH. alpinum, in which isozyme variation occurred mostly within populations rather than between them, suggesting occasional sexual events or that the parents ofH. alpinum were heterozygous. RAPD variation in this species, in contrast, was partitioned between Scottish and Swiss populations, suggesting the existence of geographical races.  相似文献   
22.
23.
Effects of two growth media, age of cells and phase of sporulation on heat resistance of Hansenula anomala were determined. Cells were grown on two solid media, McClary's acetate and V8 juice agars, at 21 ° C for 16 days. Heat resistance of cells was determined in 0.06 M potassium phosphate buffer at 48 ° C. Heat-stressed cells were plated on four recovery media: yeast extract-malt extract-peptone-glucose (YMPG), pH 7.0; YMPG, pH 3.5; YMPG containing 6% NaCl, pH 7.0; and YMPG containing 20% sucrose, pH 7.0. The composition of sporulation medium influenced the extent of sporulation and the relative heat resistance of sporulating cells. One-day-old cells were the most sensitive to heat. The heat resistance of cells was generally increased as the incubation time was extended to 16 days. Heat treatment caused a greater increase in sensitivity to NaCl than to sucrose or acid pH in recovery media. Young cells were more sensitive to NaCl than were older cells.  相似文献   
24.
J Q Su  J M Lachin 《Biometrics》1992,48(4):1033-1042
Many studies involve the collection of multivariate observations, such as repeated measures, on two groups of subjects who are recruited over time, i.e., with staggered entry of subjects. Various marginal distribution-free multivariate methods have been proposed for the analyses of such multivariate observations where some measures may be missing at random. Using the multivariate U statistic of Wei and Johnson (1985, Biometrika 72, 359-364), we describe the group sequential analysis of such a study where the multivariate observations are observed sequentially--both within and among subjects. We describe a multivariate generalization of the Hodges and Lehmann (1963, Annals of Mathematical Statistics 34, 598-611) estimator of a location shift that can be obtained via the multivariate U statistic with the Mann-Whitney-Wilcoxon kernel. We then describe large-sample group sequential interval estimators and tests based on an aggregate estimate of the location shift combined over all of the repeated measures. We also describe how the same steps could be employed to perform a group sequential analysis based on any one of the variety of marginal multivariate methods that have been proposed. These methods are applied to a real-life example.  相似文献   
25.
26.
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing.  相似文献   
27.
28.
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali‐hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +–N), and ammonia nitrogen (NH4 +–N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.  相似文献   
29.
Background:The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system.Methods:We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals’ long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage.Results:Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 μg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01–1.12), 1.09 (95% CI 0.98–1.21) and 1.00 (95% CI 0.90–1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06–1.23), 1.30 (95% CI 1.12–1.50) and 1.18 (95% CI 1.02–1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively.Interpretation:Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.

By November 2021, COVID-19 had caused more than 5 million deaths globally1 and more than 29 400 in Canada.2 The clinical manifestations of SARS-CoV-2 infection range from being asymptomatic to multiple organ failure and death. Identifying risk factors for COVID-19 severity is important to better understand etiological mechanisms and identify populations to prioritize for screening, vaccination and medical treatment. Risk factors for severity of COVID-19 include male sex, older age, pre-existing medical conditions and being from racialized communities.35 More recently, ambient air pollution has been implicated as a potential driver of COVID-19 severity.610Long-term exposure to ambient air pollution, a major contributor to global disease burden,11 could increase the risk of severe COVID-19 outcomes by several mechanisms. Air pollutants can reduce individuals’ pulmonary immune responses and antimicrobial activities, boosting viral loads.8 Air pollution can also induce chronic inflammation and overexpression of the alveolar angiotensin-converting enzyme 2 (ACE) receptor,7 the key receptor that facilitates SARS-CoV-2 entry into cells.12,13 Exposure to air pollution contributes to chronic conditions, such as cardiovascular disease, that are associated with unfavourable COVID-19 prognosis, possibly owing to persistent immune activation and excessive amplification of cytokine development.10 Thus, greater exposure to long-term air pollution may lead to severe COVID-19 outcomes.Reports exist of positive associations between long-term exposure to particulate matter with diameters equal to or smaller than 2.5 or 10 μm (PM2.5 and PM10), ground-level ozone (O3) and nitrogen dioxide (NO2), and metrics of COVID-19 severity (e.g., mortality and case fatality rate).810 However, most studies to date have used ecological and cross-sectional designs, owing to limited access to individual data, which leads to ambiguity in interpreting the results, thus hindering their influence on policy. 6,14 Ecological designs do not allow for disentangling the relative impacts of air pollution on individual susceptibility to infection and disease severity.14 Residual confounding by factors such as population mobility and social interactions is also problematic. Therefore, a cohort study with data on individuals with SARS-CoV-2 is a more appropriate design.6,14 Studies that have used individual data were conducted in specific subpopulations15,16 or populations with few severe cases,17 or had limited data on individual exposure to air pollutants.18 In Canada, 1 ecological study found a positive association between long-term exposure to PM2.5 and COVID-19 incidence,19 but no published study has explored the association between air pollution and COVID-19 severity.We aimed to examine the associations between long-term exposure to 3 common air pollutants (PM2.5, NO2 and O3) and key indicators of COVID-19 severity, including hospital admission, intensive care unit (ICU) admission and death, using a large prospective cohort of people with confirmed SARS-CoV-2 infection in Ontario, Canada, in 2020. The air contaminants PM2.5, NO2 and O3 are regularly monitored by the Canadian government, and are key pollutants that are considered when setting air-quality policies. They originate from varying sources (NO2 is primarily emitted during combustion of fuel, O3 is primarily formed in air by chemical reactions of nitrogen oxides and volatile organic compounds, and PM2.5 can be emitted during combustion or formed by reactions of chemicals like sulphur dioxide and nitrogen oxides in air) and they may affect human health differently.20,21,22  相似文献   
30.
转录因子是一种多功能蛋白,在感知应激信号、应答相应应激基因表达及传导应激信号中起着关键作用。干旱是影响植物生长发育的主要非生物胁迫之一。为了适应干旱环境,植物发展了复杂的分子机制,其中转录因子可同时控制多种途径调控干旱应激,是操纵调控和应激响应途径的有力工具。近年来,越来越多的植物转录因子的功能被阐明,了解转录因子在干旱应激的功能,对植物的工程抗旱有重要的实践意义。综述转录因子在植物干旱应激中的功能研究进展,以期为今后转录因子的研究和利用提供理论依据,培育具有较强抗旱能力的植物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号