首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39285篇
  免费   2979篇
  国内免费   2936篇
  2024年   54篇
  2023年   477篇
  2022年   1198篇
  2021年   2170篇
  2020年   1431篇
  2019年   1942篇
  2018年   1771篇
  2017年   1209篇
  2016年   1807篇
  2015年   2504篇
  2014年   2985篇
  2013年   3276篇
  2012年   3622篇
  2011年   3233篇
  2010年   1898篇
  2009年   1769篇
  2008年   2037篇
  2007年   1781篇
  2006年   1491篇
  2005年   1151篇
  2004年   981篇
  2003年   903篇
  2002年   683篇
  2001年   617篇
  2000年   575篇
  1999年   529篇
  1998年   358篇
  1997年   341篇
  1996年   332篇
  1995年   298篇
  1994年   276篇
  1993年   194篇
  1992年   274篇
  1991年   225篇
  1990年   159篇
  1989年   133篇
  1988年   103篇
  1987年   94篇
  1986年   62篇
  1985年   67篇
  1984年   34篇
  1983年   38篇
  1982年   25篇
  1981年   24篇
  1980年   12篇
  1979年   14篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Hou  Jinyan  Su  Pengfei  Wang  Dacheng  Chen  Xue  Zhao  Weiwei  Wu  Lifang 《Plant Cell, Tissue and Organ Culture》2020,142(1):143-156

Sapium sebiferum Roxb. is a widespread and economically important multipurpose tree due to its high value in ornamental, and biodiesel production as well as medicine. A highly efficient in vitro plant regeneration system through direct shoot organogenesis was established for the first time from leaves and petioles of S. sebiferum. The results showed that plant growth regulators (PGRs), mechanical damage, explant orientation, explant source, and developmental stage had a strong influence on the in vitro morphogenesis of S. sebiferum. For shoot organogenesis from leaves, the highest adventitious shoot induction rate (96.67%) with 25.67 shoots per explant was obtained when mechanically damaged leaves (the first three leaf explants at the top, leaf #1–3) were cultured with the abaxial surface placed down on Murashige and Skoog (MS) medium containing 0.5 mg L?1 thidiazuron (TDZ). For in vitro morphogenesis of petioles, the combination of 1-naphthylacetic acid (NAA) and 6-benzylainopurine (6-BA) played a key role in cell fate determination. All of the in vitro petioles produced adventitious shoots on MS medium containing 1.0 mg L?1 6-BA and 0.1 mg L?1 NAA, while they produced green calli on medium fortified with 0.5 mg L?1 6-BA and 1.0 mg L?1 NAA. The shoots were subcultured in medium fortified with 0.5 mg L?1 6-BA and 0.1 mg L?1 NAA for multiplication and elongation. The elongated shoots successfully rooted on half-strength MS (1/2 MS) medium fortified with 0.5 mg L?1 indole-butyric acid (IBA) and 0.25 mg L?1 indole-3-acetic acid (IAA), and the regenerated plantlets successfully acclimatized with a survival rate of 92.56% in the greenhouse. The genetic fidelity of in vitro regenerated plants was evaluated using inter simple sequence repeat molecular markers. The in vitro regenerated plants were found to be the true to their mother plant. This study will be beneficial for the large-scale propagation as well as the genetic improvement of S. sebiferum.

  相似文献   
982.
983.
The eel goby Taenioides cirratus (Blyth, 1,860) is a small fish inhabits muddy bottoms of brackish-water in the Indo-West Pacific. It has invaded many inland freshwater lakes in China, such as the Chaohu Lake, Gaoyou Lake and Nansi Lake, and its population increased rapidly in these freshwater lakes in recent years. The age, growth and reproductive traits of T. cirratus invading the Chaohu Lake were studied. A total of 482 specimens (210 females, 204 males and 68 juveniles) with total length (TL) ranging from 9.4 to 20.6 cm were collected using the benthic fyke nets at monthly intervals from March 2018 to February 2019. The sagittal otolith was used for age determination. Monthly variation of marginal increment ratio indicated that the annual forming of opaque band on sagittal otolith was completed during March and April. For both sexes, only four (from 0+ to 3+ years) age groups were observed and 1+ and 2+ years age individuals dominated the population. Back calculated length at age showed males grew faster than females. Both sexes reached maturity at 1+ year age and the TL at first maturity (TL50) was 12.6 cm for females and 11.9 cm for males. Monthly variation of gonado-somatic index indicated that the spawning occurred from May to August. The fecundity ranged from 967 ova to 5,114 ova, with a mean of 3,205 ova. Our study provides a comprehensive data on the key life history traits of T. cirratus for the first time.  相似文献   
984.
Porphyromonas gingivalis, as a major pathogen of periodontitis, could rapidly adhere to and invade host gingival epithelial cells (GECs) for the induction of infection. One ATP-binding cassette (ABC) transporter gene was found to be upregulated during this infection process, however, the molecular mechanisms remain unclear. In this study, we systemically investigated the messenger RNA level changes of all ABC transporter family genes in P. gingivalis while being internalized within GECs by real-time polymerase chain reaction. We identified that two ABC transporter genes, PG_RS04465 (PG1010) and PG_RS07320 (PG1665), were significantly increased in P. gingivalis after coculturing with GECs. Mutant strains with knockout (KO) of these two genes were generated by homogenous recombination. PG_RS04465 and PG_RS07320 KO mutants showed no change in the growth of bacteria per se. Knockdown of PG_RS07320, but not PG_RS04465, caused decreased endotoxin level in the bacteria. In contrast, both mutant strains showed decreased Arg- and Lys-gingipains activities, with significantly reduced adhesion and invasion capabilities. Secreted interleukin-1β (IL-1β) and IL-6 levels in GECs cocultured with PG_RS04465 or PG_RS07320 KO mutants were also decreased, whereas, only the cells cocultured with PG_RS07320 KO mutants showed significant decrease. In addition, virulence study using mouse revealed that both KO mutant strains infection caused less mouse death than wild-type strains, showing reduced virulence of two KO strains. These results indicated that ABC transporter genes PG_RS04465 and PG_RS07320 are positive regulators of the virulence of P. gingivalis.  相似文献   
985.
986.
987.

Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its occurrence may cause the shorten leaf photosynthetic period and markedly lowered grain yield. However, the physiological metabolism underlying N deficiency-induced leaf senescence and its relationship with the abscisic acid (ABA) concentration and reactive oxygen species (ROS) burst in leaf tissues are not well understood. In this paper, the effect of N supply on several senescence-related physiological parameters and its relation to the temporal patterns of ABA concentration and ROS accumulation during leaf senescence were investigated using the premature senescence of flag leaf mutant rice (psf) and its wild type under three N treatments. The results showed that N deficiency hastened the initiation and progression of leaf senescence, and this occurrence was closely associated with the upregulated expression of 9-cis-epoxycarotenoiddioxygenase genes (NCEDs) and with the downregulated expression of two ABA 8′-hydroxylase isoform genes (ABA8ox2 and ABA8ox3) under LN treatment. Contrarily, HN supply delayed the initiation and progression of leaf senescence, concurrently with the suppressed ABA biosynthesis and relatively lower level of ABA concentration in leaf tissues. Exogenous ABA incubation enhanced ROS generation and MDA accumulation in a dose-dependent manner, but it decreased the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in detached leaf. These results suggested that the participation of ABA in the regulation of ROS generation and N assimilating/remobilizing metabolism in rice leaves was strongly responsible for induction of leaf senescence by N deficiency.

  相似文献   
988.
989.
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.  相似文献   
990.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号