High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.
A novel biosensing technique for highly specific identification of gene with single-base mutation is proposed based on the implementation of the DNA ligase reaction and the biocatalyzed deposition of an insoluble product. The target gene mediated deposition of an insoluble precipitate is then transduced by quartz crystal microbalance (QCM) measurements. In this method, the DNA target hybridizes with a capture DNA probe tethered onto the gold electrode and then with a biotinylated allele-specific detection DNA. A ligase reaction is performed to generate the ligation between the capture and the detection probes, provided there is perfect match between the DNA target and the detection probe. Otherwise even when there is an allele mismatch between them, no ligation would take place. After thermal treatment at an elevated temperature, the formed duplex melts apart that merely allows the detection probe perfectly matched with the target to remain on the electrode surface. The presence of the biotinylated allele-matched probe is then detected by the QCM via the binding to streptavidin-peroxide horseradish (SA-HRP), which catalyzes the oxidative precipitation of 3,3-diaminobenzidine (DAB) by H2O2 on the electrode and provides an amplified frequency response. The proposed approach has been successfully implemented for the identification of single-base mutation in -28 site of the beta-thalassemia gene with a detection limit of 0.1 nM, demonstrating that this method provides a highly specific and cost-efficient approach for point mutation detection. 相似文献
ABSTRACT: OBJECTIVE: To study the clinico-pathological characteristics of Langerhans cell sarcoma (LCS) which involving epidermis. METHODS: A case of primary multifocal LCS was analyzed in histopathology and immunophenotype. RESULTS: A 41-year-old man with multifocal cutaneous LCS involving the inguina and waist was reported. Clinical and pathology data were available. Neoplastic cells with markedly malignant cytological features were observed. Tumor cells exhibited irregular shape with abundant and eosinophilic red staining cytoplasm; large, irregular-shaped, showing lobulated or dented nucleus and some cells with a longitudinal nuclear groove and prominent nucleoli. The tumor cells expressed CD1a, Langerin (CD207), S-100 protein, CD68 and vimentin, and did not express pan-T or B cell markers and epithelial markers. The patient died less than 1 year after diagnosis due to local recurrence and metastasis to the lung, despite the administration of local radiation and chemotherapy. CONCLUSIONS: LCS is a tumor with markedly malignant cytological features that originates from Langerhans cells. Primary multifocal neoplasms involving epidermis is even rare. Accurate diagnosis is based on the histopathological and immunohistochemical of the tumor cells.Virtual slideThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1182345104754765. 相似文献
Dehydroepiandrosterone-fatty acyl esters (DHEA-FAE) belong to a unique family of naturally occurring hydrophobic steroid hormone derivatives that are transported in circulating lipoproteins and may act as a source of dehydroepiendrosterone (DHEA) and other biologically active steroid hormones in cells. Here, we studied the metabolic fate of low-density lipoprotein-associated [(3)H]DHEA-FAE ([(3)H]DHEA-FAE-LDL) and the possible role of lysosomal acid lipase (LAL) in the hydrolysis of DHEA-FAE in cultured human cells. When HeLa cells were incubated with [(3)H]DHEA-FAE-LDL, the accumulation of label in the cellular fraction increased with incubation time and could be inhibited by excess unlabeled LDL, suggesting LDL receptor or LDL receptor-related receptor-dependent uptake. During 48 h of chase, decreasing amounts of [(3)H]DHEA-FAE were found in the cellular fraction, while in the medium increasing amounts of unesterified [(3)H]DHEA and its two metabolites, [(3)H]-5alpha-androstanedione (5alpha-adione) and [(3)H]androstenedione (4-adione), appeared. As LDL-cholesteryl ester hydrolysis is dependent on LAL activity, we depleted LAL from HeLa cells using small interfering RNAs and compared the hydrolysis of [(3)H]DHEA-FAE-LDL and [(3)H]cholesteryl-FAE-LDL. The results demonstrated a more modest but significant reducing effect on the hydrolysis of [(3)H]DHEA-FAE compared with [(3)H]cholesteryl-FAE. Moreover, experiments in LAL-deficient human fibroblasts (Wolman disease patient cells) showed that [(3)H]DHEA-FAE hydrolysis was not completely dependent on LAL activity. In summary, LDL-transported [(3)H]DHEA-FAE entered cells via LDL receptor or LDL receptor-related receptor-mediated uptake, followed by intracellular hydrolysis and further metabolism into 5alpha-adione and 4-adione that were excreted from cells. Although LAL contributed to the deesterification of DHEA-FAE, it was not solely responsible for the hydrolysis. 相似文献
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock protein 70-interacting protein), a chaperone-dependent ubiquitin ligase. The results from overexpression and RNAi experiments demonstrated that CHIP decreased the protein level of iNOS, shortened the half-life of iNOS and attenuated the production of NO. Furthermore, CHIP promoted ubiquitination and proteasomal degradation of iNOS by associating with iNOS. These results suggest that CHIP plays an important role in regulation iNOS activity. 相似文献
microRNAs (miRNAs) have been revealed to participate in the pathological process of atherosclerosis (AS). However, the exact role of miR-338-3p, a target miRNA of BMP and activin membrane-bound inhibitor (BAMBI), and its possible molecular mechanism in AS remain unidentified. In this study, we found that BAMBI was significantly decreased, whereas miR-338-3p increased in patients with AS and oxidized low-density lipoprotein (ox-LDL)-induced HUVEC cells. Furthermore, overexpression of miR-338-3p significantly decreased cell viability and elevated cell apoptosis, whereas its inhibition significantly promoted cell viability and inhibited cell apoptosis in ox-LDL-induced HUVEC cells. Moreover, miR-338-3p overexpression increased TGF-β/Smad pathway activation in ox-LDL-induced HUVEC cells. A dual-luciferase reporter assay confirmed the direct interaction between miR-338-3p and the 3′-untranslated region of BAMBI messenger RNA. Furthermore, the suppression of BAMBI ameliorated the effect of miR-338-3p inhibition against ox-LDL-induced HUVEC cell injury. In conclusion, our study thus suggests that miR-338-3p promoted ox-LDL-induced HUVEC cell injury by targeting BAMBI and activating the TGF-β/Smad pathway, which may provide a novel and promising therapeutic target for AS. 相似文献