首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24533篇
  免费   1965篇
  国内免费   1872篇
  28370篇
  2024年   55篇
  2023年   307篇
  2022年   808篇
  2021年   1298篇
  2020年   894篇
  2019年   1045篇
  2018年   1037篇
  2017年   757篇
  2016年   1078篇
  2015年   1479篇
  2014年   1736篇
  2013年   1901篇
  2012年   2258篇
  2011年   1934篇
  2010年   1169篇
  2009年   1021篇
  2008年   1203篇
  2007年   1069篇
  2006年   925篇
  2005年   815篇
  2004年   699篇
  2003年   632篇
  2002年   547篇
  2001年   481篇
  2000年   419篇
  1999年   410篇
  1998年   257篇
  1997年   273篇
  1996年   257篇
  1995年   242篇
  1994年   222篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   131篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   
992.
The incidence of melanoma is rising globally including China. Comparing to Caucasians, the incidence of non‐cutaneous melanomas is significantly higher in Chinese. Herein, we performed genomic profiling of 89 Chinese surgically resected primary melanomas, including acral (n = 54), cutaneous (n = 22), and mucosal (n = 13), by hybrid capture‐based next‐generation sequencing. We show that mucosal melanomas tended to harbor more pathogenic mutations than other types of melanoma, though the biological significance of this finding remains uncertain. Chromosomal arm‐level alterations including 6q, 9p, and 10p/q loss were highly recurrent in all subtypes, but mucosal melanoma was significantly associated with increased genomic instability. Importantly, 7p gain significantly correlated with unfavorable clinical outcomes in non‐cutaneous melanomas, representing an intriguing prognostic biomarker of those subtypes. Furthermore, focal amplification of 4q12 (KIT, KDR, and PDGFRα) and RAD51 deletion were more abundant in mucosal melanoma, while NOTCH2 amplification was enriched in acral melanoma. Additionally, cutaneous melanomas had higher mutation load than acral melanomas, while mucosal melanomas did not differ from other subtypes in mutation burden. Together, our data revealed important features of acral and mucosal melanomas in Chinese including distinctive driver mutation pattern and increased genomic instability. These findings highlight the possibilities of combination therapies in the clinical management of melanoma.  相似文献   
993.
Traditional genetic studies focus on identifying genetic variants associated with the mean difference in a quantitative trait. Because genetic variants also influence phenotypic variation via heterogeneity, we conducted a variance‐heterogeneity genome‐wide association study to examine the contribution of variance heterogeneity to oil‐related quantitative traits. We identified 79 unique variance‐controlling single nucleotide polymorphisms (vSNPs) from the sequences of 77 candidate variance‐heterogeneity genes for 21 oil‐related traits using the Levene test (P < 1.0 × 10?5). About 30% of the candidate genes encode enzymes that work in lipid metabolic pathways, most of which define clear expression variance quantitative trait loci. Of the vSNPs specifically associated with the genetic variance heterogeneity of oil concentration, 89% can be explained by additional linked mean‐effects genetic variants. Furthermore, we demonstrated that gene × gene interactions play important roles in the formation of variance heterogeneity for fatty acid compositional traits. The interaction pattern was validated for one gene pair (GRMZM2G035341 and GRMZM2G152328) using yeast two‐hybrid and bimolecular fluorescent complementation analyses. Our findings have implications for uncovering the genetic basis of hidden additive genetic effects and epistatic interaction effects, and we indicate opportunities to stabilize efficient breeding and selection of high‐oil maize (Zea mays L.).  相似文献   
994.
Abstract

The emergent need for new treatment methods for multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has focused attention on novel potential tools like nanoparticles (NPs). In the present study, a drug-free cationic nanoparticles (CNPs) system was developed and its anti-MRSA effects were firstly investigated. The results showed that CNPs (261.7?nm, 26.1?mv) showed time- and concentration-dependent activity against MRSA growth, killing ~ 90% of planktonic bacterial cells in 3?h at 400?μg ml?1, and completely inhibiting biofilm formation at 1000?μg ml?1. Moreover, CNPs at 400?μg ml?1 reduced the minimum inhibitory concentration (MIC) of vancomycin on inhibition of planktonic MRSA growth (~ 25%) and biofilm formation (~ 50%). The CNPs–bacteria interaction force was up to 22 nN. Overall, these data suggest that CNPs have a good potential in clinical applications for the prevention and treatment of MRSA infection.  相似文献   
995.
Li  Zhengtu  Li  Yinhu  Sun  Ruilin  Li  Shaoqiang  Chen  Lingdan  Zhan  Yangqing  Xie  Mingzhou  Yang  Jiasheng  Wang  Yanqun  Zhu  Airu  Gu  Guoping  Yu  Le  Li  Shuaicheng  Liu  Tingting  Chen  Zhaoming  Jian  Wenhua  Jiang  Qian  Su  Xiaofen  Gu  Weili  Chen  Liyan  Cheng  Jing  Zhao  Jincun  Lu  Wenju  Zheng  Jinping  Li  Shiyue  Zhong  Nanshan  Ye  Feng 《中国科学:生命科学英文版》2021,64(12):2129-2143
Science China Life Sciences - Prolonged viral RNA shedding and recurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in coronavirus disease 2019 (COVID-19) patients have been...  相似文献   
996.
Natural sequence variation was investigated among serogroup A subgroup IV-1 Neisseria meningitidis isolated from diseased patients and healthy carriers in The Gambia, West Africa. The frequencies of DNA import were analysed by sequencing fragments of four linked genes encoding the immunogenic outer membrane proteins TbpB (transferrin binding protein B) and OpaA (an adhesin) plus two housekeeping enzymes. Seventeen foreign tbpB alleles were independently imported into the 98 strains tested, apparently due to immune selection. The median size of the imported DNA fragments was 5 kb, resulting in the occasional concurrent import of linked housekeeping genes by hitchhiking. Sequences of tbpB from other strains of N. meningitidis as well as commensal Neisseria lactamica and Neisseria spp. isolated from the same geographical area revealed that these species share a common tbpB gene pool and identified several examples of interspecific genetic exchange. These observations indicate that recombination can be more frequent between related species than within a species and indicate that effective vaccination against serogroup B meningococcal disease may be difficult to achieve.  相似文献   
997.
998.
RING finger protein 13 (RNF13) is a newly identified E3 ligase reported to be functionally significant in the regulation of cancer development, muscle cell growth, and neuronal development. In this study, the function of RNF13 in cardiotoxin-induced skeletal muscle regeneration was investigated using RNF13-knockout mice. RNF13-/- mice exhibited enhanced muscle regeneration —characterized by accelerated satellite cell proliferation —compared with wild-type mice. The expression of RNF13 was remarkably induced in macrophages rather than in the satellite cells of wild-type mice at the very early stage of muscle damage. This result indicated that inflammatory cells are important in RNF13-mediated satellite cell functions. The cytokine levels in skeletal muscles were further analyzed and showed that RNF13-/- mice produced greater amounts of various cytokines than wild-type mice. Among these, IL-4 and IL-6 levels significantly increased in RNF13-/- mice. The accelerated muscle regeneration phenotype was abrogated by inhibiting IL-4/IL-6 action in RNF13-/- mice with blocking antibodies. These results indicate that RNF13 deficiency promotes skeletal muscle regeneration via the effects on satellite cell niche mediated by IL-4 and IL-6.  相似文献   
999.
Ion channels play an important role in cellular functions, and specific cellular activity can be produced by gating them. One important gating mechanism is produced by intra- or extracellular ligands. Although the ligand-mediated channel gating is an important cellular process, the relationship between ligand binding and channel gating is not well understood. It is possible that ligands are involved in the interactions of different protein domains of the channel leading to opening or closing. To test this hypothesis, we studied the gating of Kir2.3 (HIR) by intracellular protons. Our results showed that hypercapnia or intracellular acidification strongly inhibited these channels. This effect relied on both the N and C termini. The CO(2)/pH sensitivities were abolished or compromised when one of the intracellular termini was replaced. Using purified N- and C-terminal peptides, we found that the N and C termini bound to each other in vitro. Although their binding was weak at pH 7.4, stronger binding was seen at pH 6.6. Two short sequences in the N and C termini were found to be critical for the N/C-terminal interaction. Interestingly, there was no titratable residue in these motifs. To identify the potential protonation sites, we systematically mutated most histidine residues in the intracellular N and C termini. We found that mutations of several histidine residues in the C but not the N terminus had a major effect on channel sensitivities to CO(2) and pH(i). These results suggest that at acidic pH, protons appear to interact with the C-terminal histidine residues and present the C terminus to the N terminus. Consequentially, these two intracellular termini bound to each other through two short motifs and closed the channel. Thus, a novel mechanism for K(+) channel gating is demonstrated, which involves the N- and C-terminal interaction with protons as the mediator.  相似文献   
1000.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号