首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19101篇
  免费   1389篇
  国内免费   1252篇
  21742篇
  2024年   42篇
  2023年   260篇
  2022年   547篇
  2021年   930篇
  2020年   567篇
  2019年   810篇
  2018年   801篇
  2017年   569篇
  2016年   832篇
  2015年   1114篇
  2014年   1356篇
  2013年   1446篇
  2012年   1689篇
  2011年   1531篇
  2010年   975篇
  2009年   945篇
  2008年   1055篇
  2007年   982篇
  2006年   800篇
  2005年   689篇
  2004年   533篇
  2003年   530篇
  2002年   442篇
  2001年   344篇
  2000年   301篇
  1999年   293篇
  1998年   166篇
  1997年   158篇
  1996年   157篇
  1995年   117篇
  1994年   87篇
  1993年   70篇
  1992年   110篇
  1991年   82篇
  1990年   68篇
  1989年   52篇
  1988年   43篇
  1987年   43篇
  1986年   39篇
  1985年   51篇
  1984年   8篇
  1983年   17篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   
822.
Controlling toxigenic Fusarium graminearum (FG) is challenging. A bacterial strain (S76-3, identified as Bacillus amyloliquefaciens) that was isolated from diseased wheat spikes in the field displayed strong antifungal activity against FG. Reverse-phase high performance liquid chromatography and electrospray ionization mass spectrometry analyses revealed that S76-3 produced three classes of cyclic lipopeptides including iturin, plipastatin and surfactin. Each class consisted of several different molecules. The iturin and plipastatin fractions strongly inhibited FG; the surfactin fractions did not. The most abundant compound that had antagonistic activity from the iturin fraction was iturin A (m/z 1043.35); the most abundant active compound from the plipastatin fraction was plipastatin A (m/z 1463.90). These compounds were analyzed with collision-induced dissociation mass spectrometry. The two purified compounds displayed strong fungicidal activity, completely killing conidial spores at the minimal inhibitory concentration range of 50 µg/ml (iturin A) and 100 µg/ml (plipastatin A). Optical and fluorescence microscopy analyses revealed severe morphological changes in conidia and substantial distortions in FG hyphae treated with iturin A or plipastatin A. Iturin A caused leakage and/or inactivation of FG cellular contents and plipastatin A caused vacuolation. Time-lapse imaging of dynamic antagonistic processes illustrated that iturin A caused distortion and conglobation along hyphae and inhibited branch formation and growth, while plipastatin A caused conglobation in young hyphae and branch tips. Transmission electron microscopy analyses demonstrated that the cell walls of conidia and hyphae of iturin A and plipastatin A treated FG had large gaps and that their plasma membranes were severely damaged and separated from cell walls.  相似文献   
823.
Mutations, duplication and triplication of α-synuclein genes are linked to familial Parkinson’s disease (PD), and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) is involved in the pathogenesis of the disease. The targeted overexpression of α-syn in the substantia nigra (SN) mediated by viral vectors may provide a better alternative to recapitulate the neurodegenerative features of PD. Therefore, we overexpressed human wild-type α-syn using rAAV2/1 vectors in the bilateral SN of mouse and examined the effects for up to 12 weeks. Delivery of rAAV-2/1-α-syn caused significant nigrostriatal degeneration including appearance of dystrophic striatal neurites, loss of nigral dopaminergic (DA) neurons and dissolving nigral neuron bodies in a time-dependent manner. In addition, the α-syn overexpressed mice also developed significant deficits in motor function at 12 weeks when the loss of DA neurons exceeded a threshold of 50%. To investigate the sensitivity to neurotoxins in mice overexpressing α-syn, we performed an MPTP treatment with the subacute regimen 8 weeks after rAAV injection. The impact of the combined genetic and environmental insults on DA neuronal loss, striatal dopamine depletion, dopamine turnover and motor dysfunction was markedly greater than that of either alone. Moreover, we observed increased phosphorylation (S129), accumulation and nuclear distribution of α-syn after the combined insults. In summary, these results reveal that the overexpressed α-syn induces progressive nigrostriatal degeneration and increases the susceptibility of DA neurons to MPTP. Therefore, the targeted overexpression of α-syn and the combination with environmental toxins may provide valuable models for understanding PD pathogenesis and developing related therapies.  相似文献   
824.
In this study, we investigated the influence of zearalenone (ZEA) on the dextran sulfate sodium (DSS)‐induced colitis model both in vitro and in vivo. Our results show that the mRNA levels of IL‐1β, IL‐18, NLRP3, ASC, and caspase‐1 in the DSS+ZEA‐treated group are lower than those in either the DSS or ZEA group, and the protein expression trends are similar. Furthermore, colitis, which is characterized by body weight loss, stool consistency, and the presence of bloody feces, was significantly alleviated in the DSS+ZEA group when compared with that in the DSS group. In addition, histological analysis showed that inflammatory cell infiltration and tissue damage of the colon in the DSS+ZEA group were recovered compared with that in the DSS‐treated group. These results suggest that, instead of aggravating DSS‐induced colitis, ZEA relieves the inflammatory reaction in colon tissue, which may be related to its estrogenic activity.  相似文献   
825.
826.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits (“hallmarks”) that govern the transformation of normal cells into cancer cells. Long non‐coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark‐associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC‐specific cancer hallmark‐associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co‐expression and co‐occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self‐sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark‐associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark‐associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA‐based targeted therapy in OSCC.  相似文献   
827.
In China, three institutes for botanical research were established in the 1920s. They were the Department of Botany, Biological Laboratory of the Science Society of China (1922, Nanjing), the Fan Memorial Institute of Biology (1928, Beiping), and the Institute of Botany, Beiping Academy of Sciences (1929, Beiping).  相似文献   
828.
829.
830.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号