首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   10篇
  国内免费   16篇
  204篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   14篇
  2014年   12篇
  2013年   5篇
  2012年   17篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   12篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   12篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1986年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
11.
以菲为主要C源,吐温80作为增溶剂,研究细菌Enterobacter dissolvens在直流电和交流电条件下的生长和代谢过程。实验结果表明:当施加10 mA直流电时,通电8 h后,菌液中细胞的菲降解率较对照增长1.6倍,细胞生长亦有所加快;而施加交流电时,细菌生长和菲降解率均低于直流电刺激。  相似文献   
12.
SUN基因是调控植物生长发育的关键基因。本研究鉴定了二倍体森林草莓(Fragaria vesca)的SUN基因家族,并对各成员的理化性质、基因结构、系统进化以及基因表达进行了分析。结果表明,森林草莓有31个FvSUN基因,其编码蛋白可聚类为7个组,同一组内成员具有高度相似的基因结构与编码蛋白保守域;FvSUNs蛋白的亚细胞定位主要在细胞核中。共线性分析表明森林草莓FvSUNs基因家族主要通过染色体片段复制产生,拟南芥与森林草莓存在23对直系同源基因。利用森林草莓的转录组数据,对FvSUNs基因的组织表达特征进行分析,发现主要可归为3类:各组织均表达、组织中几乎不表达、组织特异性表达,并通过实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)进一步验证结果。此外,还对森林草莓进行不同的逆境胁迫处理,qRT-PCR分析了31个FvSUNs基因的表达情况,发现大部分基因均在不同程度上受低温、高盐或干旱胁迫的诱导表达。这些研究结果为深入揭示草莓SUN基因的生物学功能及其分子机制奠定了基础。  相似文献   
13.
吴一苓  李芳兰  胡慧 《植物学报》2022,57(3):388-398
叶脉由贯穿于叶肉内部的维管组织及其外围机械组织构成,多样化的脉序及网络结构使叶脉系统发生变异和功能分化。该文综述了叶脉系统结构与功能的最新研究进展。通过聚焦叶脉分级系统的结构与功能及其在叶片经济谱(LES)中的重要性,解释叶脉性状与其它叶片功能性状之间的关系及机制。不同等级叶脉在机械支撑与水分运输方面存在功能分化,其中1–3级粗脉在维持叶片形状和叶表面积以及物理支撑方面发挥重要作用,有利于维持叶片最大受光面积;4级及以上细脉具有水分调节功能,它们与气孔相互协调,影响叶片水分运输、蒸腾散热和光合作用速率。叶片生长过程与叶脉发育的动态变化模式决定叶脉密度,并影响叶脉密度与叶片大小之间的关系:叶面积与粗脉密度呈显著负相关,与粗脉直径呈显著正相关,而与细脉密度无关。与叶脉性状相关的叶片经济谱框架模型预测,叶脉密度较高的叶片寿命短、比叶重较小,叶片最大碳同化速率、代谢速率以及资源获取策略潜力较高。  相似文献   
14.
Two major factors which regulate tubuloglomerular feedback (TGF)-mediated constriction of the afferent arteriole are release of superoxide (O(2)(-)) and nitric oxide (NO) by macula densa (MD) cells. MD O(2)(-) inactivates NO; however, among the factors that increase MD O(2)(-) release, the role of aldosterone is unclear. We hypothesize that aldosterone activates the mineralocorticoid receptor (MR) on MD cells, resulting in increased O(2)(-) production due to upregulation of cyclooxygenase-1 (COX-2) and NOX-2, and NOX-4, isoforms of NAD(P)H oxidase. Studies were performed on MMDD1 cells, a renal epithelial cell line with properties of MD cells. RT-PCR and Western blotting confirmed the expression of MR. Aldosterone (10(-8) mol/l for 30 min) doubled MMDD1 cell O(2)(-) production, and this was completely blocked by MR inhibition with 10(-5) mol/l eplerenone. RT-PCR, real-time PCR, and Western blotting demonstrated aldosterone-induced increases in COX-2, NOX-2, and NOX-4 expression. Inhibition of COX-2 (NS398), NADPH oxidase (apocynin), or a combination blocked aldosterone-induced O(2)(-) production to the same degree. These data suggest that aldosterone-stimulated MD O(2)(-) production is mediated by COX-2 and NADPH oxidase. Next, COX-2 small-interfering RNA (siRNA) specifically decreased COX-2 mRNA without affecting NOX-2 or NOX-4 mRNAs. In the presence of the COX-2 siRNA, the aldosterone-induced increases in COX-2, NOX-2, and NOX-4 mRNAs and O(2)(-) production were completely blocked, suggesting that COX-2 causes increased expression of NOX-2 and NOX-4. In conclusion 1) MD cells express MR; 2) aldosterone increases O(2)(-) production by activating MR; and 3) aldosterone stimulates COX-2, which further activates NOX-2 and NOX-4 and generates O(2)(-). The resulting balance between O(2)(-) and NO in the MD is important in modulating TGF.  相似文献   
15.
A greenhouse hydroponic experiment was performed to evaluate how peanut seedlings (Arachis hypogaea L.) responded to iron (Fe) deficiency stress in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. The results showed that Fe deficiency inhibited peanut plant growth, decreased chlorophyll and active Fe concentrations, and dramatically disturbed ion balance. The addition of 50, 100, 250, and 500 µM SNP, significantly promoted the absorption of Fe in the cell wall, cell organelles, and soluble fractions, increased the concentrations of active Fe and chlorophyll in peanut plants, and alleviated the excess absorption of manganese (Mn) and copper (Cu) induced by Fe deficiency. In addition, SNP also significantly increased the activities of superoxide dismutase, peroxidase, and catalase, which is beneficial to inhibit the accumulation of malondialdehyde and reactive oxygen species. Addition of 250 µM SNP had the most significant alleviating effect against Fe-deficiency stress, and after 15 days of treatment, the plants with the 250 µM SNP treatment achieved comparable NO levels with those grown under optimal nutrition conditions. However, the effects of SNP were reversed by addition of hemoglobin (Hb, a NO scavenger). These results suggest that NO released from SNP decomposition was responsible for the effect of SNP-induced alleviation on Fe deficiency.  相似文献   
16.
17.
18.
Polyploidization influences the genetic composition and gene expression of an organism. This multi-level genetic change allows the formation of new regulatory pathways leading to increased adaptability. Although both forms of polyploidization provide advantages, autopolyploids were long thought to have little impact on plant divergence compared to allopolyploids due to their formation through genome duplication only, rather than in combination with hybridization. Recent advances have begun to clarify the molecular regulatory mechanisms such as microRNAs, alternative splicing, RNA-binding proteins, histone modifications, chromatin remodelling, DNA methylation, and N6-methyladenosine (m6A) RNA methylation underlying the evolutionary success of polyploids. Such research is expanding our understanding of the evolutionary adaptability of polyploids and the regulatory pathways that allow adaptive plasticity in a variety of plant species. Herein we review the roles of individual molecular regulatory mechanisms and their potential synergistic pathways underlying plant evolution and adaptation. Notably, increasing interest in m6A methylation has provided a new component in potential mechanistic coordination that is still predominantly unexplored. Future research should attempt to identify and functionally characterize the evolutionary impact of both individual and synergistic pathways in polyploid plant species.  相似文献   
19.
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2-associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E-expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2-associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib.  相似文献   
20.
Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号