首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9961篇
  免费   722篇
  国内免费   844篇
  2024年   26篇
  2023年   148篇
  2022年   384篇
  2021年   654篇
  2020年   365篇
  2019年   486篇
  2018年   487篇
  2017年   323篇
  2016年   456篇
  2015年   701篇
  2014年   816篇
  2013年   795篇
  2012年   942篇
  2011年   862篇
  2010年   506篇
  2009年   457篇
  2008年   506篇
  2007年   430篇
  2006年   333篇
  2005年   272篇
  2004年   236篇
  2003年   244篇
  2002年   199篇
  2001年   147篇
  2000年   113篇
  1999年   128篇
  1998年   72篇
  1997年   71篇
  1996年   65篇
  1995年   51篇
  1994年   39篇
  1993年   25篇
  1992年   41篇
  1991年   22篇
  1990年   21篇
  1989年   37篇
  1988年   14篇
  1987年   8篇
  1986年   9篇
  1985年   21篇
  1984年   4篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
通过试验分析,结果得出,油菜菌核病菌生长温度范围在0~34℃之间,23℃以下菌丝生长速度与温度呈正相关,25℃以上则呈负相关,23~25℃最适宜,菌丝和菌核致死温度分别为45℃和75℃.该菌对酸碱度适应范围很广,PH1~14范围内只在PH_1条件下不能生长,其最适PH值为5~6。病菌利用铵态氮源能力最强,硝态氮源次之,不能利用亚硝态氮;对氨基酸利用能力以精氨酸最强,其次是酪氨酸、天门冬氨酸和谷氨酸,赖氨酸最差。植株内精氨酸和赖氨酸比值大的白菜型油菜“黄鳝籽”病情扩展最快。  相似文献   
42.
从对照和用DEHP处理的大鼠肝脏提取核蛋白,以含酰基CoA氧化酶(AOX)基因表达调控部位的DNA片段和该基因的不同蛋白结合位点的DNA片段作为核蛋白结合反应的探针,通过凝胶电泳迁移率改变实验和Southwestern印迹分析检查了DEHP对AOX基因反式作用因子的影响。结果表明,降血脂药物DEHP可显著增加AOX基因反式作用因子的含量和(或)与基因的结合活性,在转录水平上促进基因的表达。  相似文献   
43.
44.
对48例Ⅲ°烧伤病人的创面,定量植入枯草杆菌BS224菌后,分别在24h、48h、72h及96h做痂下组织细菌定量检测。结果显示:枯草杆菌对痂下组织的致病菌有明显的拮抗作用。感染创面的BS224菌体数量24—48小时显著增加,72—96小时而下降。与清洁创面的BS224菌动态变化上相同,呈常态曲线的规律变化。  相似文献   
45.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
46.
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.  相似文献   
47.
Curcumin, a relatively non-toxic natural product isolated from Curcuma longa, is a modest inhibitor of the HIV-1 (1050 = 100 μM) and HIV-2 (IC50 = 250 μM) proteases. Simple modifications of the curcumin structure raise the IC50 value but complexes of the central dihydroxy groups of curcumin with boron lower the IC50 to a value as low as 6 μM. The boron complexes are also time-dependent inactivators of the HIV proteases. The increased affinity of the boron complexes may reflect binding of the orthogonal domains of the inhibitor in intersecting sites within the substrate-binding cavity of the enzyme, while activation of the ,β-unsaturated carbonyl group of curcumin by chelation to boron probably accounts for time-dependent inhibition of the enzyme.  相似文献   
48.
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.  相似文献   
49.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号