全文获取类型
收费全文 | 11917篇 |
免费 | 1070篇 |
国内免费 | 1201篇 |
专业分类
14188篇 |
出版年
2024年 | 51篇 |
2023年 | 205篇 |
2022年 | 433篇 |
2021年 | 697篇 |
2020年 | 484篇 |
2019年 | 573篇 |
2018年 | 546篇 |
2017年 | 407篇 |
2016年 | 529篇 |
2015年 | 782篇 |
2014年 | 945篇 |
2013年 | 939篇 |
2012年 | 1109篇 |
2011年 | 992篇 |
2010年 | 565篇 |
2009年 | 546篇 |
2008年 | 628篇 |
2007年 | 547篇 |
2006年 | 426篇 |
2005年 | 339篇 |
2004年 | 321篇 |
2003年 | 272篇 |
2002年 | 260篇 |
2001年 | 186篇 |
2000年 | 167篇 |
1999年 | 154篇 |
1998年 | 109篇 |
1997年 | 100篇 |
1996年 | 103篇 |
1995年 | 74篇 |
1994年 | 86篇 |
1993年 | 59篇 |
1992年 | 71篇 |
1991年 | 72篇 |
1990年 | 51篇 |
1989年 | 34篇 |
1988年 | 42篇 |
1987年 | 23篇 |
1986年 | 31篇 |
1985年 | 31篇 |
1984年 | 20篇 |
1983年 | 26篇 |
1982年 | 16篇 |
1980年 | 14篇 |
1979年 | 14篇 |
1977年 | 11篇 |
1975年 | 13篇 |
1974年 | 12篇 |
1973年 | 11篇 |
1970年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
Xiuxiang Liu Jinjin Wu Chenying Zhu Jie Liu Xiaoli Chen Tao Zhuang Yashu Kuang Yanfang Wang Hao Hu Ping Yu Huimin Fan Yuzhen Zhang Zhongmin Liu Lin Zhang 《Journal of cellular and molecular medicine》2020,24(2):2013-2026
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development. 相似文献
33.
Lizhen Zhang JingJing Fan Qiuxia Meng Yu Niu Wei Niu 《International journal of phytoremediation》2013,15(1):38-50
To determine how plantations of Caragana microphylla shrubs affect saline-alkali soil amelioration and revegetation, we investigated the vegetation and sampled soils from saline-alkali wasteland (SAW), perennial Caragana forestland (PCF), Caragana forest after fire disturbance (CFF). Results showed that with the development of Caragana Fabr., highly dominant species of Poaceae family, including Elymus dahuricus, Thermopsis lanceolata, Stipa tianschanica, died out in PCF. Moreover, Papilionaceae family, including Lespedeza indica, Oxytropis psammocharis, and Astragalus scaberrimus, was established both in PCF and CFF. Phytoremediation of saline-alkali wasteland (SAW) was achieved by plantation, resulting in the reduced soil pH, sodium adsorption ratio, exchangeable sodium percentage, salinity, and Na+ concentration around Caragana shrubs. Greater amounts of soil organic, total nitrogen, ammonium nitrogen, available phosphorus, and available potassium were observed in PCF topsoil than in SAW topsoil. The concentration of mineralized N in PCF soil was significantly lower than that in SAW soil at all sampled depths, indicating that Caragana shrubs were just using N and therefore less measured in soils. Fire disturbance resulted in decreased soil pH and salinity, but increased organic content, total nitrogen, and ammonium nitrogen. The improved soil parameters and self-recovery of shrubs indicated that Caragana shrubs were well established after burning event. 相似文献
34.
Chen-Guang Zhang Xiao Liu Yi-Lei Fan Mao Wang Yong-Fu Chai Peng-Cheng Wan Ya-Min Wang Ming Yue 《Acta Physiologiae Plantarum》2016,38(4):100
The physiological effects of sunflecks on understory plants are poorly understood. Kingdonia uniflora is an endemic and endangered species in China, with a patchy distribution over much of its range. Sunflecks are reportedly the likely dominant factor in determining its patchy distribution. We studied the photosynthesis of K. uniflora in the field to test whether understory sunflecks result in photoinhibition and, thereby, potentially influence its patchy distribution. K. uniflora exhibited the low dark respiration rates, low light compensation points, and low light saturation points characteristic of shade-tolerant plants, allowing maintenance during the long periods of low understory light. Moreover, K. uniflora was able to regulate light energy utilization by non-photochemical quenching in low light. Gas exchange parameters were measured in six treatments (sunfleck-enriched, sunfleck-enriched with added saturation light, sunfleck-enriched with filtered ultraviolet-B (UV-B) radiation , sunfleck-limited, sunfleck-limited with added saturation light, and sunfleck-limited with filtered UV-B). The sunfleck-enriched treatment caused photoinhibition in K. uniflora, in part due to a UV-B-induced decrease in Pn. In addition, the application of simulated sunflecks indicated that K. uniflora leaves do not need continuous light. The photosynthetic responses of K. uniflora to sunflecks indicate that the sunflecks are a limiting factor in the small-scale distribution of K. uniflora. 相似文献
35.
Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca++ spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area. 相似文献
36.
A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter 总被引:13,自引:0,他引:13
Peizhen Yang Chunhong Chen Zeping Wang Baofang Fan Zhixiang Chen 《The Plant journal : for cell and molecular biology》1999,18(2):141-149
Using a simple oligo selection procedure, we have previously identified a tobacco sequence-specific DNA-binding activity, TDBA12, that increases markedly during the tobacco mosaic virus (TMV)-induced hypersensitive response (HR). Based on the binding specificity and the two cDNA clones isolated, TDBA12 is related to a novel class of DNA-binding factors containing WRKY domains. In the present study, we report that TDBA12 could be induced not only by TMV infection but also by treatment with salicylic acid (SA) or its biologically active analogs capable of inducing pathogenesis-related (PR) genes and enhanced resistance. TDBA12 was sensitive to temperature and the protein dissociating agent sodium deoxycholate, suggesting that it may be a multimeric factor in which protein–protein interaction is important for the enhanced DNA-binding activity. Pre-treatment of nuclear extracts with alkaline phosphatase abolished TDBA12, suggesting that protein phosphorylation is important for its high DNA-binding activity. TDBA12 specifically recognized the elicitor response element of the tobacco class I basic chitinase gene promoter. The increase in the levels of TDBA12 following TMV infection or SA treatment preceded the induced expression of the tobacco chitinase gene. These results strongly suggest that certain WRKY DNA-binding proteins may be activated by enhanced protein phosphorylation and regulate inducible expression of defense-related genes during pathogen- and SA-induced plant defense responses. 相似文献
37.
High-density lipoproteins (HDL) were conjugated to Fluorescein 1,1-dioctadecyl 3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI) or colloidal gold for the investigation of ultrastructural aspects of binding and uptake of HDL by cholesterol-loaded cultured endothelial and smooth muscle cells from rat aorta. When cells were incubated for 2h at 4°C, HDL–DiI and HDL–gold conjugates were seen only on the cell surface. When cells were returned to incubation at 37°C for 5min, HDL–DiI appeared in the cytoplasm and colocalized with the fluorescent cholesteryl ester tag BODIPY-FL-C12. HDL–gold conjugates appeared in the plasmalemmal invaginations and plasmalemmal vesicles. After incubation for 15min, most of the HDL–gold conjugates reappeared on the cell surface. After incubation for 30min, only a few conjugates were observed and they localized in lysosomal-like bodies. Quantitative data indicated that when the cholesterol-loaded cells were incubated at 4°C for 2h, the numbers of HDL–gold associated in clusters on the endothelial cell surface was 1.18 clusters/m. When cells were returned to incubation at 37°C for 5min, this value decreased to 0.7, increased again to 1.13 at 15min, and decreased to 0.29 at 30min. The numbers of clusters in the plasmalemmal invaginations were 0.06 clusters/m at 4°C for 2h, increased to 0.34 at 37°C for 5min and decreased gradually to 0.19 and 0.04 at 15 and 30min, respectively. The incidence of clusters in the plasmalemmal vesicles per non-nuclear cytoplasm was 0.01 clusters/m2 at 4°C for 2h, increased significantly to 1.08 at 37°C for 5min, and decreased to 0.43 and 0.14 at 15 and 30min, respectively. This work supports that the plasmalemmal invaginations and plasmalemmal vesicles are linked to the HDL uptake in cholesterol-loaded aortic endothelial cells and smooth muscle cells. 相似文献
38.
39.
Xiangxiang Shan Yufeng Miao Rengen Fan Changzhi Song Guangzhou Wu Zhengqiang Wan Jian Zhu Guan Sun Wenzhang Zha Xiangming Mu Guangjun Zhou Yan Chen 《In vitro cellular & developmental biology. Animal》2013,49(8):576-582
In this study, we aimed to study the role of growth factor receptor-bound protein 2 (Grb2) in palmitic acid-induced steatosis and other “fatty liver” symptoms in vitro. HepG2 cells, with or without stably suppressed Grb2 expression, were incubated with palmitic acid for 24 h to induce typical clinical “fatty liver” features, including steatosis, impaired glucose metabolism, oxidative stress, and apoptosis. MTT and Oil Red O assays were applied to test cell viability and fat deposition, respectively. Glucose uptake assay was used to evaluate the glucose utilization of cells. Quantitative polymerase chain reaction and Western blot were used to measure expressional changes of key markers of insulin signaling, lipid/glucose metabolism, oxidative stress, and apoptosis. After 24-h palmitic acid induction, increased fat accumulation, reduced glucose uptake, impaired insulin signaling, enhanced oxidative stress, and increased apoptosis were observed in HepG2 cells. Suppression of Grb2 in HepG2 significantly reduced fat accumulation, improved glucose metabolism, ameliorated oxidative stress, and restored the activity of insulin receptor substrate-1/Akt and MEK/ERK pathways. In addition, Grb2 deficiency attenuated hepatic apoptosis shown by reduced activation of caspase-3 and fluorescent staining. Modulation of Bcl-2 and Bak1 also contributed to reduced apoptosis. In conclusion, suppression of Grb2 expression in HepG2 cells improved hepatic steatosis, glucose metabolism, oxidative stress, and apoptosis induced by palmitic acid incubation partly though modulating the insulin signaling pathway. 相似文献
40.
Fan SP Zakaria S Chia CH Jamaluddin F Nabihah S Liew TK Pua FL 《Bioresource technology》2011,102(3):3521-3526
Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ~29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds. 相似文献