The tumor suppressor Merlin/NF2 functions upstream of the core Hippo pathway kinases Lats1/2 and Mst1/2, as well as the nuclear E3 ubiquitin ligase CRL4DCAF1. Numerous mutations of Merlin have been identified in Neurofibromatosis type 2 and other cancer patients. Despite more than two decades of research, the upstream regulator of Merlin in the Hippo pathway remains unknown. Here we show by high-resolution crystal structures that the Lats1/2-binding site on the Merlin FERM domain is physically blocked by Merlin''s auto-inhibitory tail. Angiomotin binding releases the auto-inhibition and promotes Merlin''s binding to Lats1/2. Phosphorylation of Ser518 outside the Merlin''s auto-inhibitory tail does not obviously alter Merlin''s conformation, but instead prevents angiomotin from binding and thus inhibits Hippo pathway kinase activation. Cancer-causing mutations clustered in the angiomotin-binding domain impair angiomotin-mediated Merlin activation. Our findings reveal that angiomotin and Merlin respectively interface cortical actin filaments and core kinases in Hippo signaling, and allow construction of a complete Hippo signaling pathway. 相似文献
Structural profiling of healthy human gut microbiota across heterogeneous populations is necessary for benchmarking and characterizing the potential ecosystem services provided by particular gut symbionts for maintaining the health of their hosts. Here we performed a large structural survey of fecal microbiota in 314 healthy young adults, covering 20 rural and urban cohorts from 7 ethnic groups living in 9 provinces throughout China. Canonical analysis of unweighted UniFrac principal coordinates clustered the subjects mainly by their ethnicities/geography and less so by lifestyles. Nine predominant genera, all of which are known to contain short-chain fatty acid producers, co-occurred in all individuals and collectively represented nearly half of the total sequences. Interestingly, species-level compositional profiles within these nine genera still discriminated the subjects according to their ethnicities/geography and lifestyles. Therefore, a phylogenetically diverse core of gut microbiota at the genus level may be commonly shared by distinctive healthy populations as functionally indispensable ecosystem service providers for the hosts. 相似文献
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant‐derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd‐induced neurotoxicity. Here, we show that celastrol protected against Cd‐induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd‐induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase‐3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd‐induced phosphorylation of c‐Jun N‐terminal kinase (JNK), but not extracellular signal‐regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over‐expression of dominant negative c‐Jun potentiated celastrol protection against Cd‐induced cell death. Furthermore, pre‐treatment with celastrol prevented Cd down‐regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3′‐kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over‐expression of wild‐type PTEN enhanced celastrol inhibition of Cd‐activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd‐induced neuronal cell death via targeting JNK and PTEN‐Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd‐induced neurodegenerative disorders.
Hierarchical Cu2S microspheres wrapped by reduced graphene oxide (RGO) nanosheets are prepared via a one‐step solvothermal process. The amount of graphene oxide used in the synthesis process has a remarkable effect on the features of Cu2S microspheres. Compared to Pt and Cu2S electrodes, RGO‐Cu2S electrodes show better electrocatalytic activity, greater stability, lower charge‐transfer resistance, and higher exchange current density. As expected, RGO‐Cu2S electrodes exhibit superior performance when functioning as counter electrodes in CdS/CdSe quantum dot‐sensitized solar cells (QDSSCs) using a polysulfide electrolyte. A power conversion efficiency up to 3.85% is achieved for the QDSSC employing an optimized RGO‐Cu2S counter electrode, which is higher than those of the QDSSCs featuring Pt (2.14%) and Cu2S (3.39%) counter electrodes. 相似文献
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Bioprocess and Biosystems Engineering - The properties of the anode material and structure are critical to the microbial growth and interfacial electron transfer between the biofilm and the anode.... 相似文献
The development of Pt‐free catalysts for the alkaline hydrogen evolution reaction (HER), which is widely used in industrial scale water‐alkali electrolyzers, remains a contemporary and pressing challenge. Ruthenium (Ru) has excellent water‐dissociation abilities and could be an alternative water splitting catalyst. However, its large hydrogen binding energy limits HER activity. Here, a new approach is proposed to boost the HER activity of Ru through uniform loading of Ru nanoparticles on triazine‐ring (C3N3)‐doped carbon (triNC). The composite (Ru/triNC) exhibits outstanding HER activity with an ultralow overpotential of ≈2 mV at 10 mA cm?2; thereby making it the best performing electrocatalyst hitherto reported for alkaline HER. The calculated metal mass activity of Ru/triNC is >10 and 15 times higher than that of Pt/C and Pt/triNC. Both theoretical and experimental studies reveal that the triazine‐ring is a good match for Ru to weaken the hydrogen binding on Ru through interfacial charge transfer via increased contact electrification. Therefore, Ru/triNC can provide the optimal hydrogen adsorption free energy (approaching zero), while maintaining the strong water‐dissociation activity. This study provides a new avenue for designing highly efficient and stable electrocatalysts for water splitting. 相似文献