首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8503篇
  免费   671篇
  国内免费   621篇
  2024年   12篇
  2023年   92篇
  2022年   252篇
  2021年   450篇
  2020年   320篇
  2019年   363篇
  2018年   378篇
  2017年   265篇
  2016年   380篇
  2015年   520篇
  2014年   585篇
  2013年   623篇
  2012年   787篇
  2011年   656篇
  2010年   402篇
  2009年   387篇
  2008年   416篇
  2007年   390篇
  2006年   355篇
  2005年   277篇
  2004年   241篇
  2003年   211篇
  2002年   179篇
  2001年   145篇
  2000年   115篇
  1999年   137篇
  1998年   83篇
  1997年   91篇
  1996年   83篇
  1995年   78篇
  1994年   88篇
  1993年   61篇
  1992年   74篇
  1991年   69篇
  1990年   63篇
  1989年   34篇
  1988年   36篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9795条查询结果,搜索用时 296 毫秒
131.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   
132.
133.
134.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   
135.
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.  相似文献   
136.
137.
138.
139.
140.
The decline in DNA repair capacity contributes to the age‐associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age‐associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose‐derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17–25 years; old: 10 donors with ages ranging 50–59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double‐strand break (DSB) repair pathways—nonhomologous end joining (NHEJ) and homologous recombination (HR)—between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age‐associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号