首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31258篇
  免费   2349篇
  国内免费   2298篇
  35905篇
  2024年   65篇
  2023年   435篇
  2022年   1073篇
  2021年   1761篇
  2020年   1161篇
  2019年   1557篇
  2018年   1418篇
  2017年   994篇
  2016年   1438篇
  2015年   1983篇
  2014年   2383篇
  2013年   2594篇
  2012年   2826篇
  2011年   2543篇
  2010年   1489篇
  2009年   1373篇
  2008年   1619篇
  2007年   1423篇
  2006年   1166篇
  2005年   910篇
  2004年   750篇
  2003年   716篇
  2002年   542篇
  2001年   485篇
  2000年   460篇
  1999年   429篇
  1998年   265篇
  1997年   254篇
  1996年   253篇
  1995年   230篇
  1994年   221篇
  1993年   152篇
  1992年   199篇
  1991年   179篇
  1990年   127篇
  1989年   98篇
  1988年   81篇
  1987年   69篇
  1986年   39篇
  1985年   44篇
  1984年   24篇
  1983年   30篇
  1982年   16篇
  1981年   18篇
  1980年   7篇
  1979年   5篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Autoimmune hepatitis (AIH) is an immune-mediated chronic inflammatory liver disease, and its pathogenesis is not fully understood. Our previous study discovered that receptor interacting protein kinase 3 (RIP3) is correlated with serum transaminase levels in AIH patients. However, its role and underlying mechanism in AIH are poorly understood. Here, we detected the increased expression and activation of RIP3 in livers of patients and animal models with AIH. The inhibition of RIP3 kinase by GSK872 prevented concanavalin A (ConA)-induced immune-mediated hepatitis (IMH) by reduced hepatic proinflammatory cytokines and immune cells including Th17 cells and macrophages. Further experiments revealed that RIP3 inhibition resulted in an increase in CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) with immunoregulatory properties in the liver, spleen, and peripheral blood. Moreover, the depletion of Gr-1+ MDSCs abrogated the protective effect and immune suppression function of GSK872 in ConA-induced IMH. Altogether, our data demonstrate that RIP3 blockade prevents ConA-induced IMH through promoting MDSCs infiltration. Inhibition of RIP3 kinase may be a novel therapeutic avenue for AIH treatment.  相似文献   
102.
Chen J  Wen H  Liu J  Yu C  Zhao X  Shi X  Xu G 《Molecular bioSystems》2012,8(3):871-878
Acute graft rejection is one of the most common and serious post complications in renal transplantation, noninvasive diagnosis of acute graft rejection is essential for reducing risk of surgery and timely treatment. In this study, a non-targeted metabonomics approach based on ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (MS) is used to investigate the effect of acute graft rejection in rat renal transplantation on metabolism. To collect more metabolite information both hydrophilic interaction chromatography and reversed-phase liquid chromatography were used. Using the partial least squares-discriminant analysis, we found that the change of metabonome in a sham-operated group and a non-graft rejection group had a similar trend, while that of the acute graft rejection group was clearly different. Several discriminating metabolites of the acute graft rejection were identified, including creatinine, phosphatidyl-cholines, lyso-phosphatidylcholines, carnitine C16:0, free fatty acids and indoxyl sulfate etc. These discriminating metabolites suggested that acute graft rejection in renal transplantation can lead to the accumulation of creatinine in the body, and also the abnormal metabolism of phospholipids. These findings are useful to understand the mechanisms of the rejection, it also means that a UPLC-MS metabonomic approach is a suitable tool to investigate the metabolic abnormality in the acute graft rejection in renal transplantation.  相似文献   
103.
104.
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.  相似文献   
105.
Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases.  相似文献   
106.
107.
108.

Background

Interleukin-35 (IL-35) has recently been identified as an immunosuppressive cytokine that has been used as a potential therapy for chronic inflammatory and autoimmune diseases. However, there remains a paucity of data regarding its potential benefits after integration into mesenchymal stem cells (MSCs).

Methods

We used a dextran sulfate sodium (DSS)–induced colitis mice model and treated them with IL-35-MSCs, MSCs or saline. The body weight was recorded daily and inflammatory processes were determined. Cytokine secretion by lamina propria lymphocytes (LPLs) and percentage of regulatory T cells (Tregs) were also measured.

Results

The data showed that mice in the two treated groups recovered their body weight more rapidly than mice treated with saline in the later stage of colitis. The colon lengths of IL-35-MSC–treated mice were markedly longer than those in the other two groups and the inflammation reduced significantly. Furthermore, the percentage of Foxp3?+?Tregs increased significantly and the level of proinflammatory cytokines produced by LPLs decreased significantly in the IL-35-MSC–treated group.

Discussion

The results demonstrate that IL-35-MSCs could ameliorate ulcerative colitis by down-regulating the expression of pro-inflammatory cytokines.  相似文献   
109.
As a powerful tool for gene function prediction, gene fusion has been widely studied in prokaryotes and certain groups of eukaryotes, but it has been little applied in studies of mammalian genomes. With the first fully sequenced mammalian genomes (human, mouse, rat) now available, we defined and collected a set of fusion/fission event-linked segments (FFLS) based on structured organized genomic alignment. The statistics of the sequence features highlighted the FFLSs against their random context. We found that there are three groups of FFLSs with different component pairs (i.e. gene-gene, gene-noncoding and noncoding-noncoding) in all three mammalian genomes. The proteins encoded by the components of FFLSs in the first group shown a strong tendency to interact with each other. The segmental components in the last two groups which did not contain any protein-coding genes, were found not only to be transcribed to some level, but also more conserved than the random background. Thus, these segments are possibly carrying certain biologically functional elements. We propose that FFLS may be a potential tool for prediction and analysis of function and functional interaction of genetic elements, including both genes and noncoding elements, in mammalian genomes. The full list of the FFLSs in the genomes of the three mammals is available as supporting information at doi:10.1016/j.jtbi.2005.09.016.  相似文献   
110.
Because the cardiocirculatory response of heart transplant recipients (HTR) to exercise is delayed, we hypothesized that their O(2) uptake (VO(2)) kinetics at the onset of subthreshold exercise are slowed because of an impaired early "cardiodynamic" phase 1, rather than an abnormal subsequent "metabolic" phase 2. Thus we compared the VO(2) kinetics in 10 HTR submitted to six identical 10-min square-wave exercises set at 75% (36 +/- 5 W) of the load at their ventilatory threshold (VT) to those of 10 controls (C) similarly exercising at the same absolute (40 W; C40W group) and relative load (67 +/- 14 W; C67W group). Time-averaged heart rate, breath-by-breath VO(2), and O(2) pulse (O(2)p) data yielded monoexponential time constants of the VO(2) (s) and O(2)p increase. Separating phase 1 and 2 data permitted assessment of the phase 1 duration and phase 2 VO(2) time constant (). The VO(2) time constant was higher in HTR (38.4 +/- 7.5) than in C40W (22.9 +/- 9.6; P < or = 0. 002) or C67W (30.8 +/- 8.2; P < or = 0.05), as was the O(2)p time constant, resulting from a lower phase 1 VO(2) increase (287 +/- 59 vs. 349 +/- 66 ml/min; P < or = 0.05), O(2)p increase (2.8 +/- 0.6 vs. 3.6 +/- 1.0 ml/beat; P < or = 0.0001), and a longer phase 1 duration (36.7 +/- 12.3 vs. 26.8 +/- 6.0 s; P < or = 0.05), whereas the was similar in HTR and C (31.4 +/- 9.6 vs. 29.9 +/- 5.6 s; P = 0.85). Thus the HTR have slower subthreshold VO(2) kinetics due to an abnormal phase 1, suggesting that the heart is unable to increase its output abruptly when exercise begins. We expected a faster in HTR because of their prolonged phase 1 duration. Because this was not the case, their muscular metabolism may also be impaired at the onset of subthreshold exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号