首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5800篇
  免费   373篇
  国内免费   365篇
  2024年   14篇
  2023年   83篇
  2022年   170篇
  2021年   307篇
  2020年   170篇
  2019年   215篇
  2018年   237篇
  2017年   175篇
  2016年   228篇
  2015年   359篇
  2014年   395篇
  2013年   502篇
  2012年   555篇
  2011年   431篇
  2010年   279篇
  2009年   246篇
  2008年   255篇
  2007年   250篇
  2006年   237篇
  2005年   218篇
  2004年   142篇
  2003年   117篇
  2002年   117篇
  2001年   118篇
  2000年   90篇
  1999年   119篇
  1998年   51篇
  1997年   63篇
  1996年   55篇
  1995年   30篇
  1994年   36篇
  1993年   32篇
  1992年   41篇
  1991年   35篇
  1990年   29篇
  1989年   24篇
  1988年   19篇
  1987年   13篇
  1986年   18篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   11篇
  1980年   4篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
排序方式: 共有6538条查询结果,搜索用时 15 毫秒
981.
982.
Most patients with hepatocellular carcinoma (HCC) are in the middle or advanced stage at the time of diagnosis, and the therapeutic effect is limited. Therefore, this study aimed to verify whether deoxythymidylate kinase (DTYMK) increased in HCC and was an effective therapeutic target in HCC. The findings revealed that the DTYMK level significantly increased and correlated with poor prognosis in HCC. However, nothing else is known, except that DTYMK could catalyze the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). A number of experiments were performed to study the function of DTYMK in vitro and in vivo to resolve this knowledge gap. The knockdown of DTYMK was found to significantly inhibit the growth of HCC and increase the sensitivity to oxaliplatin, which is commonly used in HCC treatment. Moreover, DTYMK was found to competitively combine with miR-378a-3p to maintain the expression of MAPK activated protein kinase 2 (MAPKAPK2) and thus activate the phospho-heat shock protein 27 (phospho-HSP27)/nuclear factor NF-kappaB (NF-κB) axis, which mediated the drug resistance, proliferation of tumor cells, and infiltration of tumor-associated macrophages by inducing the expression of C-C motif chemokine ligand 5 (CCL5). Thus, this study demonstrated a new mechanism and provided a new insight into the role of mRNA in not only encoding proteins to regulate the process of life but also regulating the expression of other genes and tumor microenvironment through the competing endogenous RNA (ceRNA) mechanism.Subject terms: Oncogenes, Biomarkers  相似文献   
983.
Lysine acetylation is a frequently occurring post-translational modification (PTM), emerging as an important metabolic regulatory mechanism in prokaryotes. This process is achieved enzymatically by the protein acetyltransferase (KAT) to specifically transfer the acetyl group, or non-enzymatically by direct intermediates (acetyl phosphate or acetyl-CoA). Although lysine acetylation modification of glucosyltransferases (Gtfs), the important virulence factor in Streptococcus mutans, was reported in our previous study, the KAT has not been identified. Here, we believe that the KAT ActG can acetylate Gtfs in the enzymatic mechanism. By overexpressing 15 KATs in S. mutans, the synthesized water-insoluble extracellular polysaccharides (EPS) and biofilm biomass were measured, and KAT (actG) was identified. The in-frame deletion mutant of actG was constructed to validate the function of actG. The results showed that actG could negatively regulate the water-insoluble EPS synthesis and biofilm formation. We used mass spectrometry (MS) to identify GtfB and GtfC as the possible substrates of ActG. This was also demonstrated by in vitro acetylation assays, indicating that ActG could increase the acetylation levels of GtfB and GtfC enzymatically and decrease their activities. We further found that the expression level of actG in part explained the virulence differences in clinically isolated strains. Moreover, overexpression of actG in S. mutans attenuated its cariogenicity in the rat caries model. Taken together, our study demonstrated that the KAT ActG could induce the acetylation of GtfB and GtfC enzymatically in S. mutans, providing insights into the function of lysine acetylation in bacterial virulence and pathogenicity.  相似文献   
984.
Watermelon(Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid(ABA) signaling pathway gene ClSnRK2.3 might infuence watermelon fruit ripening. However,the molecular mechanisms are unclear. Here,we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator ...  相似文献   
985.
986.
987.
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.  相似文献   
988.
989.
A duty ratio drive prediction (DRDP) model of luminance degradation for organic light emitting diodes (OLED) microdisplay is proposed in this paper. The traditional stretched exponential decay (SED) model is not applicable for OLED driven by duty ratio. The DRDP model introduces the duty ratio as the variables affecting the lifetime of OLED. By fitting the undetermined coefficients with the measured luminance data, the quantitative relationships among the initial luminance, duty ratio, and OLED lifetime are obtained. Meanwhile, the model quantifies the phenomenon of spontaneous luminance recovery, which occurs when OLED switches from bright to dark. Finally, the DRDP model is used to compensate the luminance degradation of OLED driven by duty ratio. The experimental results show that the average prediction accuracy of DRDP model for white, red, green, and blue (W/R/G/B) OLED degradation trend is 0.9623. The average prediction accuracy of W/R/G/B OLED lifetime is 0.6119, which is greater than that of SED model. The lifetime is extended by 89.83% after compensation.  相似文献   
990.
Myeloid cells, including granulocytes and monocyte/macrophages, are important in disease-associated inflammatory reactions. These cells come from a common progenitor, the promyelocyte. The human promyelocytic cell line, HL-60, can be induced to terminally differentiate into granulocytes or monocyte/macrophages in a controlled fashion providing a model to study various aspects of myelomonocytic differentiation. The expression of several ion channels is controlled in HL-60 cells in a differentiation specific pattern. The purpose of this study was to determine if lineage-specific ion channel expression during HL-60 differentiation resulted in differences in functional responses to external stimuli. This was investigated by examining transmembrane potential responses in HL-60 promyelocytes, HL-60-derived polymorphonuclear cells (PMNs), and monocytes to various stimuli using the transmembrane potential sensitive dye, diSBAC2-(3). Exposure of HL-60 promyelocytes to ionomycin or ATP produced a membrane hyperpolarization. Studies using ion substitutions and ion channel blockers indicate that the hyperpolarization was mediated by KCa channels. During HL-60 promyelocyte differentiation to PMNs, the membrane potential response to ionomycin and ATP shifted from a hyperpolarization to a depolarization over 7 days. Conversely, HL-60-derived monocytes exhibited a membrane hyperpolarization in response to ionomycin and ATP. HL-60-derived monocytes also exhibit a Cl conductance specifically induced by ATP. Lineage-specific expression of ion channels during HL-60 cell differentiation is important in determining the transmembrane potential response of these cells. This may be translated into functional responses of various myelomonocytic cells during disease-associated inflammatory reactions. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号