首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  83篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
41.
42.
Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived celts. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and- effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than roptor or rictor knockouL Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP m RNAs remains elusive.  相似文献   
43.
44.
Miller Y  Ma B  Nussinov R 《Biochemistry》2011,50(23):5172-5181
Amyloid plaques and neurofibrillary tangles simultaneously accumulate in Alzheimer's disease (AD). It is known that Aβ and tau exist together in the mitochondria; however, the interactions between Aβ oligomers and tau are controversial. Moreover, it is still unclear which specific domains in the tau protein can interact with Aβ oligomers and what could be the effect of these interactions. Herein, we examine three different Aβ-tau oligomeric complexes. These complexes present interactions of Aβ with three domains in the tau protein; all contain high β-structure propensity in their R2, R3, and R4 repeats. Our results show that, among these, Aβ oligomers are likely to interact with the R2 domain to form a stable complex with better alignment in the turn region and the β-structure domain. We therefore propose that the R2 domain can interact with soluble Aβ oligomers and consequently promote aggregation. EM and AFM images and dimensions revealed highly polymorphic tau aggregates. We suggest that the polymorphic tau and Aβ-tau aggregates may be largely due to repeat sequences which are prone to variable turn locations along the tau repeats.  相似文献   
45.
46.
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders.  相似文献   
47.
Non-Homologous End Joining (NHEJ) is one of the two major pathways of DNA Double Strand Breaks (DSBs) repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(D)J recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(D)J recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.  相似文献   
48.
The catalytic mechanism underlying the aminopeptidase from Streptomyces griseus (SGAP) was investigated. pH-dependent activity profiles revealed the enthalpy of ionization for the hydrolysis of leucine-para-nitroanilide by SGAP. The value obtained (30 +/- 5 kJ.mol(-1)) is typical of a zinc-bound water molecule, suggesting that the zinc-bound water/hydroxide molecule acts as the reaction nucleophile. Fluoride was found to act as a pure noncompetitive inhibitor of SGAP at pH values of 5.9-8 with a K(i) of 11.4 mM at pH 8.0, indicating that the fluoride ion interacts equally with the free enzyme as with the enzyme-substrate complex. pH-dependent pK(i) experiments resulted in a pK(a) value of 7.0, suggesting a single deprotonation step of the catalytic water molecule to an hydroxide ion. The number of proton transfers during the catalytic pathway was determined by monitoring the solvent isotope effect on SGAP and its general acid-base mutant SGAP(E131D) at different pHs. The results indicate that a single proton transfer is involved in catalysis at pH 8.0, whereas two proton transfers are implicated at pH 6.5. The role of Glu131 in binding and catalysis was assessed by determining the catalytic constants (K(m), k(cat)) over a temperature range of 293-329 degrees K for both SGAP and the E131D mutant. For the binding step, the measured and calculated thermodynamic parameters for the reaction (free energy, enthalpy and entropy) for both SGAP and the E131D mutant were similar. By contrast, the E131D point mutation resulted in a four orders of magnitude decrease in k(cat), corresponding to an increase of 9 kJ.mol(-1) in the activation energy for the E131D mutant, emphasizing the crucial role of Glu131 in catalysis.  相似文献   
49.
50.
Blood oxygenation level dependence (BOLD) imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI)). Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors) and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS) during hyperoxia (carbogen; 95%O2+5%CO2) and hypercapnia (95%air+5%CO2) challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2) were calculated. VRM values were measured in white matter (WM) and gray matter (GM) areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3), increased response to carbogen was detected with substantially increased VRM response (compared to threshold values) within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号