首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  1994年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
41.
One of the main hallmarks of the fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) is the accumulation of neurofibrillary tangles in the brain as an outcome of the aggregation of mutated tau protein. This process occurs due to a number of genetic mutations in the MAPT gene. One of these mutations is the ∆K280 mutation in the tau R2 repeat domain, which promotes the aggregation vis-à-vis that for the wild-type tau. Experimental studies have shown that in Alzheimer’s disease Aβ peptide forms aggregates both with itself and with wild-type tau. By analogy, in FTDP-17, it is likely that there are interactions between Aβ and mutated tau, but the molecular mechanisms underlying such interactions remain to be elucidated. Thus, to investigate the interactions between Aβ and mutated tau, we constructed fourteen ∆K280 mutated tau-Aβ17-42 oligomeric complexes. In seven of the mutated tau-Aβ17-42 oligoemric complexes the mutated tau oligomers exhibited hydrophobic interactions in their core domain, and in the other seven mutated tau-Aβ17-42 oligoemric complexes the mutated tau oligomers exhibited salt-bridge interactions in their core domain. We considered two types of interactions between mutated tau oligomers and Aβ oligomers: interactions of one monomer of the Aβ oligomer with one monomer of the mutated tau oligomer to form a single-layer conformation, and interactions of the entire Aβ oligomer with the entire mutated tau oligomer to form a double-layer conformation. We also considered parallel arrangements of Aβ trimers alternating with mutated tau trimers in a single-layer conformation. Our results demonstrate that in the interactions of Aβ and mutated tau oligomers, polymorphic mutated tau-Aβ17-42 oligomeric complexes were observed, with a slight preference for the double-layer conformation. Aβ trimers alternating with mutated tau trimers constituted a structurally stable confined β-structure, albeit one that was energetically less stable than all the other constructed models.  相似文献   
42.
Developmental processes in cells require a series of complex steps. Often only a single master regulator activates genes in these different steps. This poses several challenges: some targets need to be ordered temporally, while co-functional targets may need to be synchronized in both time and expression level. Here we study in single cells the dynamic activation patterns of early meiosis genes in budding yeast, targets of the meiosis master regulator Ime1. We quantify the individual roles of the promoter and protein levels in expression pattern control, as well as the roles of individual promoter elements. We find a consistent expression pattern difference between a non-cofunctional pair of genes, and a highly synchronized activation of a co-functional pair. We show that dynamic control leading to these patterns is distributed between promoter, gene and external regions. Through specific reciprocal changes to the promoters of pairs of genes, we show that different genes can use different promoter elements to reach near identical activation patterns.  相似文献   
43.
We have determined the systemic biodistribution of the hormone leptin by PET imaging. PET imaging using 18F- and 68Ga-labeled leptin revealed that, in mouse, the hormone was rapidly taken up by megalin (gp330/LRP2), a multiligand endocytic receptor localized in renal tubules. In addition, in rhesus monkeys, 15% of labeled leptin localized to red bone marrow, which was consistent with hormone uptake in rodent tissues. These data confirm a megalin-dependent mechanism for renal uptake in vivo. The significant binding to immune cells and blood cell precursors in bone marrow is also consistent with prior evidence showing that leptin modulates immune function. These experiments set the stage for similar studies in humans to assess the extent to which alterations of leptin's biodistribution might contribute to obesity; they also provide a general chemical strategy for 18F labeling of proteins for PET imaging of other polypeptide hormones.  相似文献   
44.
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.  相似文献   
45.
Guy Y  Sandberg M  Weber SG 《Biophysical journal》2008,94(11):4561-4569
ζ-potentials of entities such as cells and synaptosomes have been determined, but ζ of brain tissue has never been measured. Electroosmotic flow, and the resulting transport of neuroactive substances, would result from naturally occurring and experimentally or clinically induced electric fields if ζ is significant. We have developed a simple method for determining ζ in tissue. An electric field applied across a rat organotypic hippocampal slice culture (OHSC) drives fluorescent molecules through the tissue by both electroosmotic flow and electrophoresis. Fluorescence microscopy is used to determine each molecule's velocity. Independently, capillary electrophoresis is used to measure the molecules’ electrophoretic mobilities. The experiment yields ζ-potential and average tissue tortuosity. The ζ-potential of OHSCs is −22 ± 2 mV, and the average tortuosity is 1.83 ± 0.06. In a refined experiment, ζ-potential is measured in various subregions. The ζ-potentials of the CA1 stratum pyramidale, CA3 stratum pyramidal, and dentate gyrus are −25.1 ± 1.6 mV, −20.3 ± 1.7 mV, and −25.4 ± 1.0 mV, respectively. Simple dimensional arguments show that electroosmotic flow is potentially as important as diffusion in molecular transport.  相似文献   
46.

Background

Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study.

Methods and Findings

We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-α) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells.

Conclusions

Our results show that CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia. The distinction made in this study between the beneficial role of CSPG during the acute stage and its deleterious effect at later stages emphasizes the need to retain the endogenous potential of this molecule in repair by controlling its levels at different stages of post-injury repair.  相似文献   
47.
Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection.  相似文献   
48.
IL-27 is a recently defined family member of the long-chain, four-helix bundle cytokines, which consist of EBI3, an IL-12p40-related protein, and p28, an IL-12p35-related polypeptide. The role of IL-27 in the regulation of experimental autoimmune encephalomyelitis has never been studied. We show in this study that neutralizing the in vivo function of IL-27 by Abs against IL-27 p28 rapidly suppressed an ongoing long-lasting disease in C57BL/6 mice. These Abs were then used to determine the mechanistic basis of disease suppression. We show in this study that IL-27 is involved not only in the polarization of naive T cells undergoing Ag-specific T cell activation, but also in promoting the proliferation and IFN-gamma production by polarized T cells, including the long term Th1 line that has been previously selected against the target encephalitogenic determinant. This may explain in part why neutralizing IL-27 suppresses an already established disease in a very rapid and significant manner.  相似文献   
49.
Mammalian Cdh1/Fzr mediates its own degradation   总被引:4,自引:0,他引:4  
The Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase mediates degradation of cell cycle proteins during mitosis and G1. Cdc20/Fzy and Cdh1/Fzr are substrate-specific APC/C activators. The level of mammalian Cdh1 is high in mitosis, but it is inactive and does not bind the APC/C. We show that when Cdh1 is active in G1 and G0, its levels are considerably lower and almost all of it is APC/C associated. We demonstrate that Cdh1 is subject to APC/C-specific degradation in G1 and G0, and that this degradation depends upon two RXXL-type destruction boxes. We further demonstrate that addition of Cdh1 to Xenopus interphase extracts, which have an inactive APC/C, activates it to degrade Cdh1. These observations indicate that Cdh1 mediates its own degradation by activating the APC/C to degrade itself. Elevated levels of Cdh1 are deleterious for cell cycle progression in various organisms. This auto-regulation of Cdh1 could thus play a role in ensuring that the level of Cdh1 is reduced during G1 and G0, allowing it to be switched off at the correct time.  相似文献   
50.
Galectin-8, a member of the galectin family of mammalian lectins, is a secreted protein that promotes cell adhesion and migration upon binding to a subset of integrins through sugar-protein interactions. Ligation of integrins by galectin-8 triggers a distinct pattern of cytoskeletal organization, including formation of F-actin-containing microspikes. This is associated with activation of integrin-mediated signaling cascades (ERK and phosphatidylinositol 3 kinase (PI3K)) that are much more robust and are of longer duration than those induced upon cell adhesion to fibronectin. Indeed, formation of microspikes is enhanced 40% in cells that overexpress protein kinase B, the downstream effector of PI3K. Inhibition of PI3K activity induced by wortmannin partially inhibits cell adhesion and spreading while largely inhibiting microspike formation in cells adherent to galectin-8. Furthermore, the inhibitory effects of wortmannin are markedly accentuated in cells overexpressing PKB or p70S6K (CHO(PKB) and CHO(p70S6K) cells), whose adhesion and spreading on galectin-8 (but not on fibronectin) is inhibited approximately 25-35% in the presence of wortmannin. The above results suggest that galectin-8 is an extracellular matrix protein that triggers a unique repertoire of integrin-mediated signals, which leads to a distinctive cytoskeletal organization and microspike formation. They further suggest that downstream effectors of PI3K, including PKB and p70 S6 kinase, in part mediate cell adhesion, spreading, and microspike formation induced by galectin-8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号