首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  1994年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
21.
Genetic research in molecular laboratories relies heavily on directed mutagenesis and gene deletion techniques. In mycobacteria, however, genetic analysis is often hindered by difficulties in the preparation of deletion mutants. Indeed, in comparison to the allelic exchange systems available for the study of other common model organisms, such as Saccharomyces cerevisiae and Escherichia coli, mycobacterial gene disruption systems suffer from low mutant isolation success rates, mostly due to inefficient homologous recombination and a high degree of non-specific recombination. Here, we present a gene deletion system that combines efficient homologous recombination with advanced screening of mutants. This novel methodology allows for gene disruption in three consecutive steps. The first step relies on the use of phage Che9c recombineering proteins for directed insertion into the chromosome of a linear DNA fragment that encodes GFP and confers hygromycin resistance. In the second step, GFP positive and hygromycin resistant colonies are selected, and in the last step, the gfp-hyg cassette is excised from the chromosome, thus resulting in the formation of an unmarked deletion. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the prcSBA operon of Mycobacterium smegmatis.  相似文献   
22.
Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all organisms. CDFs were found to be involved in numerous human health conditions, such as Type-II diabetes and neurodegenerative diseases. In this work, we established the magnetite biomineralizing alphaproteobacterium Magnetospirillum gryphiswaldense as an effective model system to study CDF-related Type-II diabetes. Here, we introduced two ZnT-8 Type-II diabetes-related mutations into the M. gryphiswaldense MamM protein, a magnetosome-associated CDF transporter essential for magnetite biomineralization within magnetosome vesicles. The mutations'' effects on magnetite biomineralization and iron transport within magnetosome vesicles were tested in vivo. Additionally, by combining several in vitro and in silico methodologies we provide new mechanistic insights for ZnT-8 polymorphism at position 325, located at a crucial dimerization site important for CDF regulation and activation. Overall, by following differentiated, easily measurable, magnetism-related phenotypes we can utilize magnetotactic bacteria for future research of CDF-related human diseases.  相似文献   
23.
N-Acetylaspartate (NAA) is a largely neuron specific dianionic amino acid present in high concentration in vertebrate brain. Many fundamental questions concerning N-acetylaspartate in brain remain unanswered. One such issue is the predominantly neuronal synthesis and largely glial catabolism which implies the existence of a regulated efflux from neurons. Here we show that transient (5 min) NMDA-receptor activation (60 μM) induces a long lasting Ca2+-dependent efflux of N-acetylaspartate from organotypic slices of rat hippocampus. The NMDA-receptor stimulated efflux was unaffected by hyper-osmotic conditions (120 mM sucrose) and no efflux of N-acetylaspartate was evoked by high K+-depolarization (50 mM) or kainate (300 μM). These results indicate that the efflux induced by NMDA is not related directly to either cell swelling or depolarization but is coupled to Ca2+-influx via the NMDA-receptor. The efflux of N-acetylaspartate persisted at least 20 min after the omission of NMDA, similar to the efflux of the organic anions glutathione and phosphoethanolamine. The efflux of taurine and hypotaurine was also stimulated by NMDA but returned more quickly to basal levels. The NMDA-receptor stimulated efflux of N-acetylaspartate, glutathione, phosphoethanolamine, taurine and hypotaurine correlated with delayed nerve cell death measured 24 h after the transient NMDA-receptor stimulation. However, exogenous administration of high concentrations of N-acetylaspartate to the culture medium was non-toxic. The results suggest that Ca2+-influx via the NMDA-receptor regulates the efflux of N-acetylaspartate from neurons which may have both physiological and pathological importance.  相似文献   
24.
25.
Prions replicate in the host cell by the self-propagating refolding of the normal cell surface protein, PrP(C), into a beta-sheet-rich conformer, PrP(Sc). Exposure of cells to prion-infected material and subsequent endocytosis can sometimes result in the establishment of an infected culture. However, the relevant cell surface receptors have remained unknown. We have previously shown that cellular heparan sulfates (HS) are involved in the ongoing formation of scrapie prion protein (PrP(Sc)) in chronically infected cells. Here we studied the initial steps in the internalization of prions and in the infection of cells. Purified prion "rods" are arguably the purest prion preparation available. The only proteinaceous component of rods is PrP(Sc). Mouse neuroblastoma N2a, hypothalamus GT1-1, and Chinese hamster ovary cells efficiently bound both hamster and mouse prion rods (at 4 degrees C) and internalized them (at 37 degrees C). Treating cells with bacterial heparinase III or chlorate (a general inhibitor of sulfation) strongly reduced both binding and uptake of rods, whereas chondroitinase ABC was inactive. These results suggested that the cell surface receptor of prion rods involves sulfated HS chains. Sulfated glycans inhibited both binding and uptake of rods, probably by competing with the binding of rods to cellular HS. Treatments that prevented endocytosis of rods also prevented the de novo infection of GT1-1 cells when applied during their initial exposure to prions. These results indicate that HS are an essential part of the cellular receptor used both for prion uptake and for cell infection. Cellular HS thus play a dual role in prion propagation, both as a cofactor for PrP(Sc) synthesis and as a receptor for productive prion uptake.  相似文献   
26.
27.
Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects.  相似文献   
28.
Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived celts. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and- effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than roptor or rictor knockouL Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP m RNAs remains elusive.  相似文献   
29.
Miller Y  Ma B  Nussinov R 《Biochemistry》2011,50(23):5172-5181
Amyloid plaques and neurofibrillary tangles simultaneously accumulate in Alzheimer's disease (AD). It is known that Aβ and tau exist together in the mitochondria; however, the interactions between Aβ oligomers and tau are controversial. Moreover, it is still unclear which specific domains in the tau protein can interact with Aβ oligomers and what could be the effect of these interactions. Herein, we examine three different Aβ-tau oligomeric complexes. These complexes present interactions of Aβ with three domains in the tau protein; all contain high β-structure propensity in their R2, R3, and R4 repeats. Our results show that, among these, Aβ oligomers are likely to interact with the R2 domain to form a stable complex with better alignment in the turn region and the β-structure domain. We therefore propose that the R2 domain can interact with soluble Aβ oligomers and consequently promote aggregation. EM and AFM images and dimensions revealed highly polymorphic tau aggregates. We suggest that the polymorphic tau and Aβ-tau aggregates may be largely due to repeat sequences which are prone to variable turn locations along the tau repeats.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号